Federated Service-Oriented File Transfer Framework Adam R. Turner

Thesis Description	Objective/Approach
Network topology is not always static – allow for a dynamic topology by implementing as collaborating federated services. The network is not always reliable – develop support for file redundancies and backups using multiple replicated sources.	Objective Develop a framework-based federated file transfer (FFT) protocol and service-oriented storage system with reliable and efficient upload and download capabilities.
Transport cost can be high for single-source downloads – peer-to-	Approach Research current technologies related to the FFT framework
Use of a single connection for control and data communication limits performance – develop support for concurrent RMI based control protocol and smart-proxy socket based data streaming.	 Conduct a feasibility study to find best technologies to use Refactor or enhance the current SORCER byte-store service implementation as cooperating services Develop support for concurrent control protocol and data
Transport of large whole files using a single stream has a high cost to retransmit if transport is erroneous – <i>develop a reliable and efficient data transfer method using multiple streams that is better suited for sending large files.</i>	 streaming 5. Develop support for connections to multiple byte-store peers 6. Develop a method to effectively and efficiently distribute files and file fragments among multiple byte-store services
Bandwidth is limited – cache most used files on a local byte-store service to reduce the need for excessive bandwidth.	7. Validate the FFT framework in the SORCER environment
Schedule	Benefits
 2005.11.14 – Literature review of main research trends and current relevant technologies 2005.11.21 – Completed feasibility study 	 Increased scalability and performance achieved by using federated file storage services
2005.12.02 – Completed Initial design of the FFT framework 2005.12.05 – Refactored and enhanced a byte-store provider for the FFT framework 2005.12.12 – Thesis proposal presentation	 Increased reliability and a dynamic configuration realized by using byte-store providers with smart proxies
 2005.12.12 Refined the FFT framework design 2006.01.09 – Developed control/data protocols to multiple peers 2005.02.20 – Deployment, integration, testing of file sharing between peers with its validation in SGrid 2006.03.06 – Thesis defense 	 Reduced network costs, improved distribution speeds, and higher reliability provided by using a peer-to-peer system with replicas across multiple byte-store providers