
Class Loading Issues in Java™ RMI
and Jini™ Network Technology

Michael Warres

Sun Labs
16 Network Circle
Menlo Park, CA 94025

Class Loading Issues in Java™ RMI
and Jini™ Network Technology

Michael Warres

SMLI TR-2006-149 January 2006

Abstract:

Java class loading plays a key role in the Java Remote Method Invocation (Java RMI) and Jini
architectures by enabling code mobility over the network. However, it has also saddled these
architectures with a set of type compatibility and code downloading issues that commonly
result in run-time errors and programmer confusion. This paper describes the Java RMI class
loading model and examines its ramifications.

email address:
michael.warres@sun.com

© 2006 Sun Microsystems, Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun
Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Java, Java Virtual Machine, JVM, JDK, Jini, J2SE, Java RMI, Java Archive, Java Specification Request, and
Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trade-
mark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@sun.com>.All technical
reports are available online on our website, http://research.sun.com/techrep/.

Class Loading Issues in JavaTM RMI and

JiniTM Network Technology

Michael Warres
Sun Microsystems Laboratories

michael.warres@sun.com

Abstract

Java class loading plays a key role in the Java Remote Method Invo-
cation (Java RMI) and Jini architectures by enabling code mobility over
the network. However, it has also saddled these architectures with a set
of type compatibility and code downloading issues that commonly result
in run-time errors and programmer confusion. This paper describes the
Java RMI class loading model and examines its ramifications.

1 Introduction

Class loading is a powerful and distinguishing feature of the Java platform. It
enables Java processes to load application and system code at run time from
a variety of sources, such as the local file system, a remote web server, or an
in-memory buffer. It supports many diverse uses: remotely published Java ap-
plets, pluggable application containers, code instrumentation, on the fly software
upgrades, and run-time code generation, among others.

Two interrelated architectures that heavily utilize class loading are Java
Remote Method Invocation (Java RMI) and Jini network technology. Java
RMI provides the ability to invoke methods on objects hosted within remote
Java processes. Jini extends the Java RMI programming model to support a
more full-fledged notion of distributed services, incorporating both client- and
server-side computation, that can be discovered and used in an ad-hoc manner
over the network. Both Java RMI and Jini fundamentally rely on passing Java
objects between Java processes, where the executable code for a transmitted
object may not be preinstalled in its destination. Supporting this form of object
transfer requires dynamically loading the class definition for the object into the
receiving process. Without this functionality, supplied by Java class loading,
neither Java RMI nor Jini would be possible.

At the same time, class loading lies at the root of a set of abstruse type
compatibility and code downloading issues that can significantly complicate
development and deployment of Java RMI- and Jini-based systems, especially
in cases involving multi-party service interactions. This document attempts to

1

enumerate and explain these problems. It is structured as follows. Section 2
gives background on class loading in Java. Section 3 describes the basic RMI
class loading model, which is also employed by Jini. Section 4 examines the
issues that follow from Java RMI and Jini’s use of class loaders. Section 5
discusses preferred classes, a variant RMI class loading scheme that addresses
some of the issues raised in the preceding section. Finally, Section 6 analyzes
the overall impact of RMI class loading issues.

2 Class loading

This section gives a basic overview of Java class loading; for further details, refer
to [1, 2, 3].

2.1 Basic model

Concretely, class loaders are instances of subclasses of the abstract java.lang.
ClassLoader class. Their primary purpose is to obtain class definitions (i.e.,
code) for classes whose names they are passed.1 This function is performed
by each class loader’s loadClass method, which takes as input a class name,
and returns a java.lang.Class object representing the loaded class. Inside the
class loader, this translates into several steps: first, the class loader checks if it
has previously loaded a class of the given name, and if so, returns that class.2

If no such class has been loaded yet, then the class loader obtains (through
means specific to itself) a definition for the class, formatted as a Java class file.
Finally, the class loader reifies the class by defining it—passing its definition to
the JavaTM Virtual Machine (JVM), which hands back a representative Class
object.

Class loading is the initial step of a larger process through which a class
is readied for execution. After a class is loaded, it must undergo linking and
initialization before other classes can call or instantiate it. These steps are
carried out by the JVM in between the defining of the class and the class’s
first use, though they may not take place immediately—the JVM may elect
to perform them lazily, only as needed. Linking involves verifying the class
definition’s bytecodes for structural validity, and resolving symbolic references
to other classes, which may in turn necessitate recursive loading of the referenced
classes. Once linking is complete, the JVM initializes the class by invoking its
static initializer method and any initializers for static fields, if present.

Class loading occurs initially during program startup, but may also be in-
voked throughout program execution—either explicitly, in response to requests
from application or library code, or implicitly, to (lazily) resolve symbolic refer-
ences. The JVM caches the results of loadClass invocations on class loaders,

1In this paper, the term “class” encompasses Java interfaces as well, unless noted otherwise.
2This step is expected, but not directly enforced. The JVM will, however, throw a

java.lang.LinkageError if a class loader resolves a given class name to more than one class
over time.

2

parent loaderchild loader ancestors
ca

lle
r

defined class

loadClass calls

Class object ClassNotFoundException

Figure 1: Class loader delegation

both for performance, and to guard against inconsistent return values, which
could otherwise compromise type system integrity [4].

Each Java process uses multiple class loaders. A class loader typically obtains
class definitions from a fixed set of sources, such as a URL, or the enclosing
process’s class path. Class loaders cooperate to load application and system
classes through hierarchical delegation—each class loader holds a reference to a
parent loader that it calls upon when asked to load a class unknown to itself.3

For reasons explained later, delegation is generally tried first—most class loaders
will only attempt to define classes if delegation to their parents fails.

A natural consequence of class loader delegation is that classes defined in a
parent loader are visible through class resolution to its child loaders, and may
be referenced by classes defined in those loaders. Thus, class relationships may
span class loader boundaries: for example, a class C1 defined in class loader L1

may subclass from class C2 defined in class loader L2, provided that L2 is an
ancestor (i.e., direct or indirect parent) loader of L1.

Because loading a given class may involve multiple class loaders, some ad-
ditional terminology is useful to distinguish their roles. As established in [2],
the initiating loader of a class is the class loader that is originally requested to
load the class, even if the request is ultimately fulfilled by another class loader
through delegation. The defining loader of a class is the class loader that ac-
tually obtains its definition and defines it. We will sometimes describe a class
using the common notation 〈C,L〉, where C is the name of the class, and L is
its defining loader.

2.2 Well-known class loaders

The following class loaders are present in each Java process running JDKTM 1.2
or later [5]:

3It is technically possible for a class loader to delegate to multiple “parent” loaders, though
doing so is unorthodox, and increases the risk of violating loader constraints (described in [2]).
Such a class loader, however, must still designate one of its delegation targets as the nominal
parent loader to be returned by the ClassLoader.getParent method.

3

application
class loader

extension
class loader

bootstrap
class loader

other class loaders

context class loaders

thread

thread

Figure 2: Well-known class loaders

Bootstrap class loader. This class loader loads system classes, such as those
belonging to the various java.* packages. Where and how these classes
are actually stored may vary between JVM implementations. This class
loader is also known as the primordial or null class loader.4

Extension class loader. This class loader loads classes from JavaTM Archive
(JAR) files [6] present in the standard extensions directory [7] for the Java
process.

Application class loader. This class loader loads classes from within directo-
ries or JAR files specified by the class path of the Java process. As this is
the default class loader returned by the ClassLoader.getSystemClass-
Loader method, it is sometimes called the system class loader.

These three class loaders are arranged such that the application class loader
delegates to the extension class loader, which in turn delegates to the boot-
strap class loader, as pictured in figure 2. As a result of this hierarchy, system
classes are visible (via class resolution) to extension classes, and both system
and extension classes are visible to application classes.

One other commonly used class loader bears mention: the context class
loader. This is not a distinct class loader instance, but rather a mutable thread-
local variable provided by the java.lang.Thread class. The context class loader
for a given thread represents a suggested class loader for code running in that
thread to use to load classes or resources. It is typically consulted by library
code that needs to explicitly load classes on behalf of the current thread. For
example, a utility method might perform (roughly) the following operations to

4The bootstrap class loader used to also be called the system class loader (for example,
by [1]), a term that now, somewhat confusingly, refers to the application class loader.

4

resolve a class name:5

Thread thread = Thread.currentThread();
ClassLoader ccl = thread.getContextClassLoader();
Class resolved = Class.forName(className, true, ccl);

The context class loader is necessary because library code cannot generally
infer the appropriate class loader to use to load classes for the current thread.
Library code cannot rely on its own class loader to resolve all class names it
encounters, since the library code may be defined in an ancestor class loader,
such as the bootstrap or extension class loader, from which the desired classes
(perhaps belonging to the application) are not visible. The application class
loader is not always sufficient for loading these classes, either: for instance, if
the thread is executing a downloaded applet, then it may need to resolve applet
classes defined in a separate, applet-specific class loader. Because the classes
to be resolved, in the general case, may be defined in an arbitrary class loader
unknown to library code, this class loader must be supplied explicitly. The
context class loader presents a standard means to convey this value.

2.3 Other roles of class loaders

Class loaders not only provide class definitions to the JVM, but also determine
various aspects of the classes they define:

Type identity. Class loaders create new namespaces for types. The compile-time
type system of the Java programming language is name-based only: each class
or interface name unambiguously designates a single type. The Java run-time
environment, however, uses a type system with an added dimension, in which
type identity is based not only on the name of a class, but also on its defining
class loader. Thus, if class loaders L1 and L2 each define a class named C, then
the two classes constitute separate types even if the class files on which they are
based are identical—in other words, 〈C,L1〉 = 〈C,L2〉 iff L1 = L2. Attempting
to assign an instance of 〈C,L1〉 to a variable of type 〈C,L2〉 if L1 and L2 differ
will cause a java.lang.ClassCastException to be thrown.6

Note that although 〈C,L1〉 and 〈C,L2〉 are separate types, they can still
interact through supertypes they hold in common. For example, if both types
implement the same interface 〈I, Lparent〉, then instances of either type can be
assigned to variables or fields of type 〈I, Lparent〉. However, any common super-
type must constitute a single type—if 〈C,L1〉 and 〈C,L2〉 were to implement
〈I, L1〉 and 〈I, L2〉, respectively, then their type incompatibility would simply
extend a level higher.

5Realistically, the utility method would probably nest the getContextClassLoader invo-
cation within a call to java.security.AccessController.doPrivileged, so as not to require
callers to have permission to access the context class loader.

6Type conflicts of this sort rarely arise in standalone applications, since all classes used by
such an application are usually defined along a single, non-branching delegation chain of class
loaders, leaving no opportunity for duplicate definitions.

5

parent loader

superclass

child loader

subclass

child loader

subclass

Figure 3: Type compatibility through a common supertype

The namespace-defining property of class loaders is sometimes used to pro-
vide a cheap approximation of subprocesses—this was in fact one of the original
motivations for tying types to class loaders. As classes defined in different class
loaders constitute separate types, they accordingly carry separate copies of class
state (i.e., static field values). Therefore, classes defined in a class loader L1

are insulated from actions taken by classes defined in another class loader L2,
unless those actions affect state visible to both sets of classes (for example, state
belonging to classes defined in a third class loader Lparent that is an ancestor
of both L1 and L2), or classes in L1 are actively exposed to the classes in L2

(perhaps by passing references through commonly visible state).

Life span. In the Java run-time environment, classes, like objects, can be gar-
bage collected when no longer referenced. An extra condition applies, though:
classes can be garbage collected only when their defining class loaders are eligible
for garbage collection as well [3]. Since each class strongly references its defining
class loader, this implies that the set of classes defined by a class loader becomes
eligible for garbage collection as a unit—an outstanding reference to any one
of the classes will keep the entire set alive. This rule is present to ensure a
consistent view of state between classes. Consider two classes C1 and C2 defined
in the same class loader—if C1 were permitted to be garbage collected while C2

remained loaded, then a subsequent use of C1 from C2 (or elsewhere) would
force C1 to be reloaded and reinitialized, losing any state previously visible to
C2.

Security. The Java security model uses permission objects to control access
to protected resources and capabilities. For example, reading a local file re-
quires that the caller possess in its set of granted permissions an appropriate
java.io.FilePermission. The set of permissions granted to a given class is
determined in part by its defining class loader—specifically, the class loader
chooses a protection domain for the class when defining it, which describes the
security-relevant attributes of the class, such as the location from which it was
loaded, and any certificates used to sign it. This protection domain is later
mapped by the security policy of the enclosing Java process to a set of granted
permissions. The defining class loader may also assign a base set of static per-

6

missions to each protection domain it creates; these permissions are granted to
the protection domain regardless of the security policy in effect.

The combination of functions served by class loaders neatly fits code down-
loading scenarios, such as applets running in a web browser, where there is
minimal interaction and dependence between code loaded from different remote
sources. Simply by defining groupings of downloaded code in separate class load-
ers, an application can ensure that the different sets of code cannot interfere
with one another or clash over class names, and can be unloaded independently.
Class loaders are also useful for automatically granting permissions to down-
loaded code based on the code’s origin. For example, through their defining
class loaders, applets can be granted security permissions permitting them to
connect back to the hosts from which they were loaded.

3 RMI class loading

Java RMI provides the ability for Java processes to invoke methods on remote
objects hosted by other Java processes. A remote object is represented within a
client process by a proxy object, which is responsible for translating local method
invocations made on it by the client into call data sent to and received from
the remote object’s hosting process. A key differentiator between Java RMI
and other remote procedure call systems is its support for passing full-fledged
objects as the arguments and return values of remote calls, including objects
for which class definitions are not available in advance in the receiving process.
Java RMI achieves this through clever use of class loading: classes for received
objects are resolved in class loaders that can fetch the class definitions from
remote locations specified by the sender [8].

RMI class loading is also employed by Jini. Jini is a service-oriented archi-
tecture built on top of the RMI programming model that adds features such as
ad-hoc discovery, remote events, transactions, and leasing [9]. Jini systems are
composed of services—components that offer functionality to clients elsewhere
on the network, as well as to each other. Like remote objects in Java RMI,
JiniTM services are represented within client processes by proxy objects, and
may send or receive Java objects in the course of performing remote operations—
a Jini service that performs all operations remotely may in fact be implemented
simply as a remote object. Unlike remote objects, Jini services can utilize proxy
objects that perform client-side computation as well as (or instead of) remote
communication, and are not constrained to using a Java RMI implementation
to transmit data. Even when sending objects over other channels, though, Jini
clients and services must still be able to remotely download class definitions for
the objects, which they accomplish using RMI class loading, independently of
the rest of the RMI infrastructure.

7

3.1 Object marshalling

Java RMI passes objects between Java processes using an augmented form of
Java object serialization. Java object serialization enables objects to be serial-
ized (flattened) to, and deserialized (reconstituted) from, a sequence of bytes;
this byte sequence, called a serialization stream, can then be directed over the
network or stored persistently [10]. Code for the objects is not directly included
in the serialization stream. Rather, the serialized form of an object consists of
its serializable state (by default, the values of its fields, except for those declared
transient or static) along with class descriptors, which identify the object’s
class and its superclasses by name, but do not contain their class definitions.7

To deserialize the object, the class descriptor representing its concrete class is
mapped to an actual class in the deserializing process, that class is instantiated,
and the resulting object instance is initialized based on its state read from the
stream.

Basic object serialization by itself does not entirely fulfill the needs of Java
RMI, since its serialization streams do not provide information about locations
from where classes can be remotely loaded. Java RMI plugs this gap by extend-
ing the standard serialization format (as well as the utility classes that produce
and consume serialization streams) to include alongside each class descriptor a
codebase annotation: a list of URLs indicating sources, called codebases, from
which a definition for the class, and other classes referenced by it, can be down-
loaded. To distinguish them from standard serialization streams, these extended
serialization streams are commonly called marshalling streams, and the acts of
serializing and deserializing objects with codebase annotations are referred to
as marshalling and unmarshalling, respectively.

Note that when an object is unmarshalled, only the class descriptor and
codebase annotation for its immediate, concrete class play a part in the reso-
lution of that class; selection of the object’s class then implies its superclasses.
Thus, even though marshalling streams also include codebase annotations for
superclasses of marshalled objects, these annotations are (for the most part)
effectively ignored during unmarshalling.8

3.2 Class resolution

As part of unmarshalling, the RMI infrastructure must map class names en-
countered in the marshalling stream to classes to instantiate. This mapping is
performed by the java.rmi.server.RMIClassLoader class. RMIClassLoader
is not a class loader itself; rather, it is a class comprised of static methods
that implement various parts of the RMI class loading mechanism, typically by
internally invoking class loaders.

RMIClassLoader by default manages a set of class loaders, called codebase
7Strictly speaking, only class descriptors for serializable superclasses (i.e., those that im-

plement the java.io.Serializable interface) are included in the serialization stream.
8The only exceptions to this are if a superclass itself serves as the concrete class of other

objects in the stream, or if the stream contains a Class object representing the superclass.

8

URL 1 URL 2 URL 1

... ...

co
de

ba
se

lo
ad

er
s

co
nt

ex
t c

la
ss

lo
ad

er
s

RMIClassLoader

codebase loader table

Figure 4: RMIClassLoader and codebase loaders

loaders, through which it loads classes (it can also be configured to employ
other class loading schemes, as described in section 3.4). Each codebase loader
is uniquely characterized by two values: a parent loader, to which it delegates,
and a list of codebase URLs, from which it loads class definitions if delegation
to the parent fails. Codebase loaders are stored in a table that indexes them
based on these values. Figure 4 illustrates this structure.

The default class resolution algorithm used by RMIClassLoader is as follows:
RMIClassLoader receives as input for each class loading request a class name
and associated codebase annotation read from the marshalling stream, and,
optionally, a class loader argument termed the default loader—by convention
a class loader related to the calling context, such as the loader of the calling
class itself.9 To load the class, RMIClassLoader first tries the default loader, if
specified. If the class is not found in the default loader, RMIClassLoader then
consults its internal table to obtain the codebase loader that loads from the
codebase annotation’s URLs and has the calling thread’s context class loader
as its parent; if no such codebase loader exists yet, then one is created. Finally,
RMIClassLoader calls on the codebase loader to load the class.

Effectively, RMIClassLoader’s default class loading algorithm prefers resolv-
ing class names to classes “belonging” to the caller, by first trying the caller-

9The exact value passed as the default loader varies depending on the Java RMI imple-
mentation used, and whether the class resolution occurs during remote method invocation or
dispatch. For example, the standard RMI implementation provided by the Java 2 platform
(also known as JRMP) uses the closest non-bootstrap class loader on the call stack, if one is
present. Jini Extensible Remote Invocation, an alternate Java RMI implementation included
in the Jini Technology Starter Kit, during invocation uses the defining class loader of the
proxy object through which the remote invocation was made, and during dispatch uses the
defining class loader of the exported remote object, unless explicitly directed otherwise.

9

provided default loader, rather than immediately using a codebase loader to
load the given class. Furthermore, since each codebase loader delegates to its
parent loader—a context class loader—before attempting to define classes it-
self, application classes visible in context class loaders are also favored over
remotely loaded classes. Even when classes are loaded remotely, secondary
classes referenced by them can resolve to local application classes, again due to
the delegation of codebase loaders to context class loaders.

3.3 Codebase annotation

The RMI class loading mechanism is responsible for producing as well as con-
suming codebase annotations. To marshal an object, a sending process must
emit a codebase annotation for the object’s class, which requires identifying a
set of URLs from which the class (and potentially other classes it references) can
be downloaded. The task of mapping from a class to its codebase annotation is
handled, along with class resolution, by the RMIClassLoader class.

In the RMI class loading model, the originating process of a (to be) down-
loaded class is responsible for establishing its codebase. From then on, the
(logical) class ideally remains associated with that codebase, even as instances
of the class are retransmitted from one process to another, allowing the same
codebase to be reused by each receiver of the class. From the perspective of
a single process, this translates roughly into the following rule: downloaded
classes should be annotated with their remote sources, so as to “preserve” their
codebases, whereas local classes should be assigned a codebase annotation as-
sociated with the process itself, since the process is serving as the originator of
these classes.

To achieve this behavior, RMIClassLoader by default determines the code-
base annotation for a class based on its defining class loader. If the defin-
ing loader is a codebase loader,10 then the codebase annotation is the list of
source URLs for that loader. Otherwise, the codebase annotation is taken from
the java.rmi.server.codebase system property value of the sending process.
Thus, codebase annotations are normally preserved by a causal chain: the in-
coming codebase annotation for a downloaded class determines the defining
codebase loader of that class, which in turn serves as the source of the outgo-
ing codebase annotation for the class. This sequence of events is depicted in
figure 5.

Note that the model described above does not preserve codebase annotations
for classes that are resolved locally, since the incoming codebase annotations for
these classes are not tied to their defining loaders. This does not present a
problem if all processes in a system load the same set of classes locally—even
though the codebase annotation for a class in this set may change each time it is
marshalled by a different process, no receiving process will ever depend on the
value of the codebase annotation, since all processes can load the class locally.

10Or a java.net.URLClassLoader, not including the application class loader or its ancestor
loaders.

10

process

URL 1 URL 2

local

resolve annotate

Foo
"Foo"
URL 1

"Foo"
URL 1

codebase: URL 0

class loaders

Figure 5: Class annotation

In systems composed of processes with non-uniform sets of locally available
classes, however, codebase annotation loss can indeed cause errors; this issue is
examined further in section 4.2.

3.4 Service provider interface

This section has focused on the default class loading scheme employed by the
RMIClassLoader class and, by extension, the Java 2 Standard Edition (J2SETM)
RMI implementation. In J2SE version 1.4, RMIClassLoader was made plug-
gable through the addition of a service provider interface, java.rmi.server.
RMIClassLoaderSpi, enabling other class loading algorithms to be substituted
in the form of alternate back-end implementations, called providers. One such
provider is presented later, in section 5.

4 Issues

RMI class loading succeeds in enabling code mobility between Java processes.
It is well suited to self-contained, one-to-one interactions between clients and
servers. However, experience with RMI class loading, particularly within the
scope of Jini, has shown that it does not deal as seamlessly with more com-
plicated use cases, particularly those involving multi-party interactions. Type
conflicts can result from mixing objects whose classes were loaded from differ-
ent codebases. Relaying objects from one process to another can fail in certain
cases due to codebase annotation loss. Changes to codebase content may fail to
reach clients. Class loader delegation can lead to unwanted local class resolu-
tion. Lastly, codebase configuration and availability issues follow from the use
of separate channels for transmitting code and data.

11

client application

service
proxy

service
proxy

client application

service
proxy

service
proxy

(a) (b)

Figure 6: Type conflict scenarios: (a) service composition, (b) service orches-
tration

4.1 Type conflicts

As described in section 3.2, RMIClassLoader’s default behavior is to resolve
classes using different codebase loaders, depending on the codebase annotation
of each class, along with the context class loader present during unmarshalling.
Recall that classes defined in different class loaders constitute distinct types.
Therefore, classes loaded from different codebases (with the same context class
loader in effect) are not directly compatible with one another—interaction can
only occur through shared supertypes, defined in common ancestor loaders of the
codebase loaders involved. Attempts to assign or cast directly between classes
defined in sibling codebase loaders will fail, triggering ClassCastExceptions.

Some examples of more specific circumstances in which type conflicts can
arise are listed below. For brevity, we use the notation codebase(P) to indi-
cate the codebase annotation associated with a process P (i.e., P ’s java.rmi.
server.codebase system property value), and the notation loader(A,L) to de-
note the codebase loader assigned to codebase annotation A under context class
loader L; we further abbreviate this to loader(A) in the common case where
the context class loader is set to the application class loader (its default value).
Unless otherwise noted, the context class loader for all threads involved in the
examples is assumed to be the application class loader.

Service composition. A client process Pclient uses service S1, whose proxy object
(instantiated within Pclient) intends to internally use service S2, invoking S2

through an interface named I that S2’s proxy object implements. S1 and S2 are
provided by separate server processes P1 and P2, such that codebase(P1) and
codebase(P2) differ. Because the use of S2 is a hidden implementation detail of
S1, none of S2’s classes, including I, are locally resolvable in Pclient. Therefore,
S1’s proxy object’s use of I is bound to 〈I, loader(codebase(P1))〉, whereas S2’s
proxy object implements the interface 〈I, loader(codebase(P2))〉. As a result,
when S1’s proxy object attempts to use S2’s proxy object as a value of (S1’s
notion of) type I, a ClassCastException is thrown.

Service orchestration. A client process Pclient plugs together proxy objects for

12

services S1 and S2, provided by server processes P1 and P2 with different code-
bases. S1 and S2 try to interact using a class (or interface) named C that is not
exposed in their public service interfaces, and hence is unknown to Pclient. For
example, C may be a specialized service interface that S2’s proxy object imple-
ments and S1 understands, or C may be a concrete subclass of an object passed
between S1 and S2 through an interface that expresses the value in terms of a
publicly known (but more general) supertype. Then, by similar logic to the ser-
vice composition case, S1’s proxy object binds C to 〈C, loader(codebase(P1))〉,
while S2’s proxy object views C as 〈C, loader(codebase(P2))〉, ultimately result-
ing in a ClassCastException.

Codebase annotation changes. A client process Pclient uses service S hosted by
process Pserver with codebase(Pserver) = A1. Classes belonging to S’s proxy
object are accordingly defined in loader(A1) within Pclient. Later, Pserver is
reconfigured so that codebase(Pserver) = A2, while S’s proxy object remains
instantiated in Pclient. Classes of objects that Pclient subsequently receives
from Pserver may then, depending on the class and the context in which un-
marshalling occurs,11 be resolved in loader(A2), rendering them incompatible
with the existing set of classes used by S’s proxy. Such a codebase annotation
change could be caused by a modification to the hostname or port of the code-
base server, or, if using a content-sensitive URL scheme such as HTTPMD [11],
could result simply from an update to the codebase content served.12

It should be noted that in certain situations, type conflicts can be averted
through clever manipulation of the context class loader. For example, in the
service composition case above, if S1’s proxy object were to set the context class
loader to loader(codebase(P1)) before unmarshalling S2’s proxy object, then
loader(codebase(P2), loader(codebase(P1))) would be used to initiate loading
of classes for S2’s proxy object; through class loader delegation, S2’s proxy
would then implement 〈I, loader(codebase(P1))〉, the same interface seen by
S1’s proxy. This technique, however, is not ideal: it is easy to bungle (the
context class loader could be set to the wrong value, or not restored properly),
requires additional permissions to get and set the context class loader value,
and does not generalize to all cases of type conflicts.

4.2 Codebase annotation loss

While defining classes in different class loaders can lead to type conflicts, combin-
ing classes in the same class loader can result in a different problem—codebase
annotation loss.

11Assuming default class resolution behavior, if the default loader passed to RMIClassLoader

is loader(A1) (as is likely to be the case if S’s proxy performs the unmarshalling) and the
class in question is resolvable in this loader, then it will be resolved in loader(A1), retaining
type compatibility with classes established under the previous codebase. Otherwise, it will be
be resolved in loader(A2).

12Since JAR files embed a timestamp, even simple repackaging of a JAR file could cause
codebase content to change.

13

Recall that in the standard RMI class loading scheme, classes are annotated
based on their defining loaders, using the source URLs of the defining loader
if the class was loaded remotely. Therefore, if the class of an object being
unmarshalled is resolved to a class defined in a codebase loader, that class will
“retain” its original codebase annotation when instances of it are marshalled
elsewhere. If, however, the object’s class happens to be resolved in a local class
loader, such as the application class loader, then the class will be annotated
with the value of the java.rmi.server.codebase system property in outgoing
marshalling streams, effectively losing the original codebase annotation.

For example, suppose that process P1 creates an instance O of a class named
C, and that P1 marshals O to another process P2, which in turn marshals it
to a third process P3. As with the examples in the previous section, assume
that the context class loaders of all threads involved are set to the application
class loaders of their respective processes. Let C be resolvable in the application
class loaders of both P1 and P2, but not in P3. When P1 marshals O to P2,
C is annotated with codebase(P1), since it was loaded locally in P1. Within
P2, C is resolved locally despite its incoming annotation, since the codebase
loader assigned to load it first delegates to the application class loader. As a
result, when P2 marshals O to P3, C is annotated with codebase(P2) instead of
codebase(P1), causing P3 to attempt to load C in loader(codebase(P2)) rather
than loader(codebase(P1)).

process

URL 1 URL 2

local

resolve annotate

Foo

"Foo"
URL 1

"Foo"
URL 0

codebase: URL 0

class loaders

Figure 7: Codebase annotation loss

Codebase annotation loss is undesirable for a number of reasons. It often
leads to class resolution failures: in the example above, even though P2 resolves
C locally, the sources indicated by codebase(P2) may not offer a class definition
for C, in which case P3 would be unable to resolve C. Even if the new codebase
annotation happens to work, the codebase to which it refers may have a shorter
lifetime than the original codebase and the object itself, setting the stage for
future class resolution failures. Additionally, classes loaded from the old and
new codebases would be type incompatible with one another: if P1 were to
also send O directly to P3, then the directly and indirectly received copies of O

14

would be instances of 〈C, loader(codebase(P1))〉 and 〈C, loader(codebase(P2))〉,
respectively. Finally, since permission grants to a class are often tied to its
codebase, codebase annotation loss can cause a class to be afforded different
rights than it would otherwise possess.

4.3 Codebase annotation mixing

Oftentimes, values sent between processes in Java RMI- and Jini-based systems
are not single objects, but graphs of interconnected objects. For example, if the
serializable state of an object O1 includes references to objects O2 and O3, then
marshalling O1 has the effect of marshalling O2 and O3 along with it.

Ideally, when a graph of objects is marshalled, the classes of the objects
within are all assigned the same outgoing codebase annotation. This way, a
single codebase loader will be used to resolve all of the classes during unmar-
shalling. If a marshalled graph of objects contains a mix of codebase annota-
tions, though, then the classes will be handled by different codebase loaders
upon unmarshalling, frequently causing type conflicts when (for example) the
field type of one object resolves to a different type than that of the object to
which it refers. Any hierarchical relationship between the defining loaders of the
classes in the sending process is lost in the receiving process, where the different
codebase annotations are mapped to sibling codebase loaders.

A common situation in which codebase mixing arises is when a process mar-
shals an object graph containing instances of both local and downloaded classes.
Suppose, for instance, that process P1 constructs an object graph containing an
instance of 〈C1, Lapp〉 with a field of type 〈C2, Lapp〉 that refers to an instance
of 〈C3, loader(A)〉, where C2 is a supertype of C3, Lapp is the application class
loader, and A is a codebase annotation other than codebase(P1). This object
graph can exist in P1 without violating type rules, since the type of the field
is a supertype of its referent. When P1 marshals the object graph to another
process, P2, C1 is annotated with codebase(P1), whereas C3 is annotated with
A.13 Consequently, P2 resolves C1 and C3 using different codebase loaders; as-
suming that neither C1, C2, nor C3 are locally resolvable within P2, then C1’s
field type resolves to 〈C2, loader(codebase(P1))〉, while C3’s supertype resolves
to 〈C2, loader(A)〉. This mismatch triggers a ClassCastException during un-
marshalling, when P2 attempts to assign C1’s field its value.

Codebase annotation loss can also lead to codebase annotation mixing. If a
marshalled graph of objects with uniform codebase annotations is unmarshalled
and then remarshalled by a process such that some, but not all, of the anno-
tations are lost, then the remarshalled object graph will carry mixed codebase
annotations. This could occur if the process performing the remarshalling had
locally resolved some of the classes in the object graph, but downloaded others.

13C2’s annotation is immaterial, because C2 is not the concrete class of any object in the
graph.

15

4.4 Codebase content changes

Section 4.1 described how modifying the codebase annotation associated with
a running service can trigger type conflicts. A different problem can result if
the content of a service’s codebase is updated without changing the codebase
annotation that refers to it—client processes may continue to use outdated
versions of classes loaded prior to the codebase change, despite the publishing
of newer versions.

Codebase updates may fail to reach clients due to either of two reasons.
First, if a client strongly references a codebase loader populated with outdated
codebase contents (for example, if the client application still holds references to
instances of classes defined in that loader), then the codebase loader will remain
resident in RMIClassLoader’s codebase loader table,14 and will continue to be
consulted when loading classes from that codebase. Since the codebase loader
must preserve all mappings it accumulates from class names to loaded classes,
it cannot replace previously loaded classes with newly loaded versions. Even if
the stale codebase loader is no longer strongly referenced by the client, it may
be “resurrected” if a request to load a class from its associated codebase arrives
before the codebase loader is actually garbage collected.

A second factor that can mask codebase updates from clients is JAR file
caching. By default, the Java platform’s standard “jar:” protocol handler
caches JAR file contents based on their referring URL for the lifetime of the
Java process. Therefore, if a client process rereads a JAR file from a codebase
whose contents have changed since the client read it initially, the client will
continue to see the JAR file’s original contents.

Retention of outdated codebase content can be avoided by changing a code-
base’s URL each time its contents are modified, since this ensures that the
updated codebase content is viewed as a new entity by both the client’s code-
base loader table and its JAR file cache.15 However, as mentioned previously,
changing codebase URLs can lead to type conflicts in certain cases.

4.5 Undesired local class resolution

The standard class loader delegation model calls for class loaders to delegate
to their parent loaders before defining a class themselves. The rationale behind
this is that defining classes further up the delegation hierarchy encourages type
sharing, minimizing the number of classes to load and reducing the possibility
of type conflicts. Consider the simple case of three class loaders, L1, L2, and
Lparent, each capable of defining a class named C, where L1 and L2 are child
loaders of Lparent. Suppose L1 and L2 are each asked to resolve C. If they
delegate first, a single, shared class results, whereas if they delegate only as a

14Assuming the default RMIClassLoader provider or PreferredClassProvider (described in
section 5) is used.

15In this respect, one side benefit of using content-sensitive URL schemes such as HTTPMD
to refer to codebases is that codebase URLs change automatically as a result of codebase
content updates.

16

fallback, they will define separate classes in themselves that are type incompat-
ible with one another.

A consequence of standard class loader delegation, when applied to RMI
class loading, is that the class of a marshalled object is always resolved locally
when possible. Sometimes, this behavior is appropriate. However, there are also
reasons for wanting to force class downloading, described below:

Implementation control. A marshalled object may depend on a specific imple-
mentation of its class, provided by the stream-specified codebase, or may wish
to eschew faulty versions of the class known to exist in receiving processes.

Package access. Just as classes defined in different class loaders are considered
distinct, so are the run-time packages to which they belong. If some classes
in a (lexical) package are loaded locally while others are downloaded—perhaps
due to differing notions in the sender and receiver of the set of classes in the
package—then classes on opposing sides of the resulting class loader divide will
be denied access to each other’s package-private members.16 Forcing all classes
in a package to be downloaded avoids this possibility.

Type separation. The publisher of a class may wish to ensure that the class
is kept distinct from local classes in receiving processes, both to prevent local
code from accessing its private methods and fields, and to guarantee separate
class-level state.

Security permissions. Forcing a class to be downloaded ensures that it will be
granted the permissions assigned to its remote codebase. In practice, this is
rarely a problem, since local classes are likely to be granted more extensive
permissions than downloaded code.

4.6 Codebase configuration

In the RMI class loading model, code and data are transmitted separately—the
marshalled form of an object contains a codebase URL rather than actual class
definitions. This allows the receiver to load class definitions only when necessary,
but comes at a cost: sending an object depends on the prior configuration of
codebases for classes referenced in the object’s marshalled form.

With the standard RMI class loading mechanism, a deployer specifies the
codebase for a process by setting its java.rmi.server.codebase system prop-
erty. Note that setting this property does not trigger any action to actually host
class definitions at the codebase—it simply asserts a list of URLs with which to
annotate locally loaded classes in outbound marshalling streams. Configuration
of the codebase is a separate set of steps, often performed outside of the main

16Java’s package sealing mechanism attempts to address scenarios such as this by limiting
definition of all classes in a sealed package to the same class loader. However, package sealing
cannot handle the case where a child class loader defines classes in a package before the
ancestor class loader has a chance to do so, as described in JDK bug 4302406 (http://bugs.
sun.com/bugdatabase/view bug.do?bug id=4302406).

17

process. A typical sequence involves first creating a JAR file containing class
definitions to make available to remote processes, then starting a “class server”
(e.g., an HTTP server) to serve the JAR file, and lastly launching the applica-
tion process, specifying in its command line a URL for the class server as the
java.rmi.server.codebase value.

Establishing the codebase in this manner is an inconvenient and error-prone
process. The deployer may mistype or otherwise specify an incorrect value
for the java.rmi.server.codebase system property. The codebase itself may
contain the wrong content—it might omit needed class definitions, or provide
out-of-date versions of them. The deployer might even neglect to host a codebase
in the first place.

Confusion as to the function of codebases—particularly that codebase URLs
are resolved remotely—also contributes to codebase misconfiguration. Deploy-
ers sometimes specify file URLs as the value of java.rmi.server.codebase,
causing class resolution failures in remote processes because the file paths are
only meaningful locally. Another common error is listing “localhost” as the
hostname in a codebase URL, which directs the receiver of an object to at-
tempt to downloaded needed classes from its own host, as opposed to that of
the codebase.

Since codebases are chosen during deployment, they cannot be verified by
the compiler; thus, successful compilation of an RMI- or Jini-based application
provides little assurance in itself that transfer of objects between processes will
actually succeed. Because the run-time failures resulting from codebase mis-
configuration may not occur immediately, or may only appear during certain
interactions—for example, if an object of a specific class is sent—even successful
initial execution of an application is no guarantee against later problems.

Security must also be considered. A process may wish to ensure the confi-
dentiality and/or data integrity of objects it sends and receives. Securing the
channel over which marshalled data is transmitted is insufficient by itself, since
part of each object—its code—may be sent separately. Therefore, codebases ref-
erenced by a secured marshalling stream must themselves be secured as well, in
a manner consistent with the protections applied to the marshalled data—this
can be achieved, for example, by using HTTPS or HTTPMD URLs (or even
file URLs, if all participating processes share a trusted filesystem). This further
complicates configuration, since security must be arranged in two places rather
than one, through non-uniform mechanisms.

A straightforward way to eliminate many of the sources of misconfiguration
is to automate codebase deployment. For example, an RMI/Jini process launch-
ing utility might programmatically start an HTTP server, and construct from
its host and port an appropriate java.rmi.server.codebase property value.
Unfortunately, this approach isn’t universally applicable. For maximum flexi-
bility, the RMI class loading model does not limit the types of URLs that can
be used for codebases, so long as they are understood by receivers: a codebase
may be hosted on a different machine than its associated process(es), or may
employ a non-standard URL scheme and protocol. These custom deployments
cannot be handled by an automated mechanism. Furthermore, some aspects

18

of codebase deployment are less amenable to automation: determining proper
JAR file contents requires advance knowledge of the types of objects to be mar-
shalled at run time, and ensuring security is configured sensibly may depend on
trust assumptions or other external factors that are not easily codified.

4.7 Codebase availability

Transmitting code and data separately can also limit the scope of marshalled
objects. A marshalled object is only as available as the codebases on which it
depends—if any of them are unreachable, then the object cannot be unmar-
shalled.

Long-lived objects pose a codebase availability problem. For example, an
object may be marshalled to persistent storage, and not retrieved until years
later. For retrieval to succeed, the codebase must still exist in the exact same
location. Even if one is willing to commit the resources to maintain a codebase
over time, it is difficult to determine where and to what degree such an effort is
necessary: marshalled objects may have arbitrarily long lifetimes, and there is
no built-in mechanism for tracking how many (if any) marshalled objects rely
on a given codebase.

Another way in which a codebase may become less available than the ob-
jects depending on it is if its class server, or the network providing access to the
class server, fails. Therefore, highly available marshalled objects require highly
available codebases. Consider the case of a Jini service whose proxy object com-
municates remotely with a back-end server. A sensible strategy for reinforcing
availability of the service is to eliminate the single point of failure represented
by the back-end server, by deploying additional servers and equipping the proxy
to switch from one to the other in case of failure. However, the codebase for the
proxy object is also a single point of failure—if unavailable, the proxy object
cannot be instantiated in the first place. Currently, the standard solution to
this problem is to use a highly-available (clustered) web server for the codebase,
which may be costly to administer and depend on custom DNS configuration.

A codebase may also be unavailable because it is unreachable. While objects
may travel between processes, their codebases remain stationary. If an object
travels outside the range of its codebase, then it can no longer be unmarshalled.
This could occur if the codebase server resides within a private network pro-
tected by network address translation and/or a firewall, and objects dependent
on the codebase migrate outside of the network. Because of this, deployers must
decide up front what the domain of objects exported by a process will be, and
select their codebase accordingly.

5 Preferred class loading

In response to several of the class loading issues described in section 4, version 2.0
of the Jini specifications introduced the notion of preferred classes [12]. A pre-
ferred class is a class that is loaded by a class loader without the loader first dele-

19

gating to its parent loader. Preferred class loading is supported by an alternative
RMIClassLoader provider, net.jini.loader.pref.PreferredClassProvider,
an implementation of which is included in versions 2.0 and higher of the Jini
Technology Starter Kit.

PreferredClassProvider mimics the default RMIClassLoader provider in
most respects: class loading is still handled by codebase loaders keyed on the
codebase annotation of the class to load in conjunction with the context class
loader of the invoking thread. PreferredClassProvider differs from the default
provider in that the codebase loaders it creates delegate class loading requests to
their parent loaders only when the class or resource to load is not preferred; also,
the caller-associated default loader is consulted only for non-preferred classes.17

Preferred classes for a given codebase URL list are designated by a preferred
list—a resource (i.e., file or JAR file entry) located at a well-known position
relative to the first codebase URL in the list.18 The preferred list itself consists
of a sequence of name expressions, each accompanied by a true or false value
indicating whether classes or resources matching the name expression are to
be preferred. If the preferred list is absent, then no classes or resources are
preferred.

The following example illustrates the effects of preferred class loading. Con-
sider a process P that unmarshals instances of classes named Cpref and Creg,
both with codebase annotation A (assume the context class loader is set to the
application class loader throughout). Cpref is preferred and Creg is not, as spec-
ified by the preferred list contained in their codebase. Then, because Creg is not
preferred, loading of it follows the default class resolution algorithm: through
class loader delegation, it will be defined in the senior-most ancestor loader to
which a definition is available, and thus defined in loader(A) only if not resolv-
able locally. Cpref , on the other hand, will always be defined in loader(A)—its
initiating loader—regardless of whether or not any ancestor loaders can load, or
have already loaded, a class of that name.

5.1 Benefits

By offering codebases (and their deployers) more input into the class resolution
process, the preferred class mechanism addresses the following class loading
issues:

Codebase annotation loss. Recall that codebase annotation loss occurs when the
class of an unmarshalled object is resolved locally, in a class loader whose associ-
ated codebase annotation differs from the incoming codebase annotation of the
class. Marking a class as preferred prohibits such resolution. Thus, a preferred
class cannot “lose” its codebase, since it will always be defined in a codebase

17While this statement summarizes their high-level intent, the exact rules governing use of
the default loader are somewhat more complicated; a full specification is given in [12].

18If the URL refers to a JAR file, then the preferred list is the META-INF/PREFERRED.LIST

entry within that JAR file; if the URL is a directory, then the preferred list is the file at the
path META-INF/PREFERRED.LIST relative to the directory.

20

process

URL 1 URL 2

local

resolve

process "Foo"
URL 1

class loaders

URL 1 server

Foo

prefer Foo

pref
list

Figure 8: Preferred class loading

loader that preserves record of the codebase. Applied to the codebase anno-
tation loss example from section 4.2, the class named C, now preferred, would
be defined in loader(codebase(P1)) within P2, allowing C to retain its original
codebase annotation of codebase(P1) in the marshalled data sent from P2 to P3.

Codebase annotation mixing. By preventing codebase annotation loss, the pre-
ferred class mechanism also avoids cases of codebase annotation mixing that
result from it. Designating a group of classes from a given codebase as preferred
ensures that a receiving process will define all of the classes in the same codebase
loader, leading the classes to be assigned a uniform outgoing codebase annota-
tion if remarshalled. However, if a process marshals an object graph it has
explicitly assembled to contain instances of both local and downloaded classes,
then the resulting marshalling stream will contain mixed codebases regardless
of whether preferred class loading is in effect.

Undesired local class resolution. Preferred class loading directly addresses this
issue by providing a way to disable local resolution of selected classes. Preferring
a class ensures that the implementation of the class provided by its codebase
will be used, and that the class will constitute a distinct type with separate
state from any local class of the same name. Marking all classes in a package as
preferred guards against package access errors by guaranteeing that the classes
will be defined in the same class loader, and hence belong to the same run-time
package.

5.2 Class boomerangs

For ease of explanation, the description thus far of preferred classes omits a
detail of the class resolution algorithm necessary to handle cases in which a
preferred class is loaded back into its (loosely speaking) originating process—a
situation sometimes called a class boomerang.

Suppose a process P marshals an instance O of a local class 〈C,Lapp〉 that

21

is marked as preferred in P ’s codebase, and that O (or another instance of the
same class) eventually returns to and is unmarshalled by P—this could occur,
for example, if a remote process were to echo O back to P , if P were to pass O
in a remote call to a remote object hosted by P , or simply if P were to marshal
and unmarshal O to/from a file. In O’s marshalled form, C will be annotated
with codebase(P). Assume that the context class loader of the unmarshalling
thread is Lapp, the application class loader. If P were to follow the preferred
class algorithm as currently outlined, it would resolve C in loader(codebase(P)),
which would immediately define C without delegating to its parent loader Lapp,
since C is preferred. The resulting class 〈C, loader(codebase(P))〉 would be
separate from (and type incompatible with) its original self, 〈C,Lapp〉.

process

URL 0 URL 1

local

resolve annotate

Foo

"Foo"
URL 0

codebase: URL 0

class loaders

Foo

prefer Foo

Figure 9: Naive (hypothetical) resolution of a preferred class boomerang

To deal this possibility, PreferredClassProvider institutes a special clause:
if the codebase annotation of a preferred class to be resolved matches the outgo-
ing codebase annotation associated with a class loader “from” the unmarshalling
context, then that class loader is directly called upon to load the class. More
precisely, if the class’s codebase annotation matches the annotation associated
with the default loader, then the default loader is first tried; if the annotation
matches an annotation associated with the context class loader or one of its
ancestor loaders, then the junior-most matching loader serves as the codebase
loader. Thus, in the example above, Lapp would be chosen as the codebase
loader (if not also the default loader) to resolve C, since C’s codebase annota-
tion codebase(P) matches the outgoing codebase annotation assigned to Lapp.
Consequently, C would resolve back to 〈C,Lapp〉, preserving type consistency.

22

5.3 Preferred class selection

Effective use of preferred class loading requires careful selection of the set of
classes to prefer. Preferring a class sacrifices type compatibility with local code,
since it causes the class to be defined in a non-local class loader (ignoring class
boomerangs). Therefore, classes appearing in public APIs should not be pre-
ferred, since doing so would render the API unusable for interaction between
local and downloaded code. Type compatibility is not needed, however, for
non-API “implementation” classes, which are not directly referenced by exter-
nal code. Because of this, it makes sense to prefer these classes.

The decision to prefer a class also impacts resource consumption: if a class is
preferred, then each process that resolves it (ignoring class boomerangs) must
download and process its class definition, and allocate space for it, even if a
class that is suitable in all aspects other than type identity has already been
loaded locally.

The tradeoffs involved in preferring a class have subtle implications for API
design. Designating public API classes as not preferred leaves them susceptible
to codebase annotation loss. However, as noted in section 3.1, only codebase
annotations for the direct classes of marshalled objects play a significant role
during unmarshalling. Therefore, codebase annotation loss for interfaces and
abstract classes is mostly harmless,19 since they cannot be directly instantiated.
For this reason, it is recommended that public APIs be defined purely in terms
of abstract types (with all other classes marked preferred), as doing so limits
the scope of codebase annotation loss to classes for which such loss has little
impact.

5.4 Limitations

Despite its benefits, the preferred class mechanism leaves unsolved significant
class loading issues affecting Java RMI and Jini:

Type conflicts. PreferredClassProvider adopts the same basic class loader
structure as the default RMIClassLoader provider, creating separate class load-
ers in which to load classes from different codebases. Therefore, it is similarly
prone to type conflicts between classes downloaded from different locations. It
fares better than the default provider in one respect: by preventing codebase
loss, preferred class loading also eliminates type conflicts artificially caused by
codebase loss.

Unfortunately, PreferredClassProvider is actually more likely than the
default RMIClassLoader provider to incur type conflicts in situations involving
codebase changes. To see this, consider again the codebase change scenario pre-
sented in section 4.1: a client process Pclient uses service S hosted by process
Pserver, whose initial codebase A1 later changes to A2 while Pclient continues
to use S’s original proxy object. Suppose instances of an internal implementa-
tion class named C are passed back and forth between S’s proxy and Pserver;

19Unless Class objects for such classes are sent between processes, which is rare in practice.

23

because C is not part of S’s public API, it is marked as preferred. When S’s
proxy object receives an instance of C sent after the codebase change, C will be
annotated with A2. Under the default RMIClassLoader provider, C could still
be resolved in the default loader (presumably set to loader(A1), since S’s proxy
object is the caller), avoiding a type conflict. With PreferredClassProvider,
however, the default loader will not be consulted, since C is preferred, and
does not qualify as a “boomeranged” class (i.e., C’s codebase annotation does
not match that associated with the default loader). As a result, C will resolve
to 〈C, loader(A2)〉, which clashes with the definition of C used by S’s proxy,
〈C, loader(A1)〉.

Codebase configuration and availability. Preferred class loading does not affect
the interpretation or function of codebases themselves; it only changes the rules
governing when they are used. Therefore, codebase configuration and availabil-
ity remain factors to be considered. Codebase configuration actually becomes
more complicated when preferred classes are used, since codebase deployers must
perform the extra task of composing preferred lists for the classes to serve. As
with the codebase contents themselves, these preferred lists cannot be statically
verified for correctness. Preferred class loading is also slightly more sensitive
to codebase failure, in that it requires the first element of the codebase URL
list (from which the preferred list is loaded) to always be available, even if no
classes are preferred.

An additional limitation of preferred class loading is that it depends on
favorable API design and correct formulation of preferred lists in order to be
effective. If an API needs to reference concrete classes, then those classes will
not benefit from preferred class loading, since (to support type compatibility)
they cannot be preferred. If a preferred list is improperly constructed, preferred
class loading may end up increasing, rather than decreasing, the number of class
loading-related failures in a system.

6 Discussion

The JavaTM RMI and Jini architectures are compelling in large part because
they enable programming of distributed systems using the standard Java object
model. They do not rely on a separate interface definition language, with its
own abstractions and limitations, to codify remote communication. Rather,
distributed interactions are governed by the same Java language mechanisms
and safeguards that apply to local operations.20 Like objects, remote services
are encapsulated: to interact with a service, a client need only know its interface,
not how it is implemented, or what protocol it uses to communicate. The result
is a programming model that in theory allows services to be reasoned about and
used simply as Java objects.

20A clear distinction between local and remote interaction is maintained, however, by re-
flecting remote invocation failures as checked exceptions that must be handled or propagated
by callers.

24

6.1 Impact

Class loading issues compromise the conceptual simplicity of the Java RMI and
Jini architectures.

To the application developer, RMI class loading introduces restrictions and
failure modes for downloaded code that are not expressed clearly through APIs
or language constructs. A process cannot freely mix objects whose code was
loaded from different locations, since they may not agree on common run-time
types, resulting in unchecked ClassCastExceptions that application code is
unlikely to be equipped to handle. Processes cannot transmit arbitrary (seri-
alizable) objects—codebases must be arranged in advance to host their class
definitions, otherwise unmarshalling will fail. API design is affected as well:
defining public APIs that reference concrete classes should be avoided, since it
invites codebase loss, increasing the chances of unmarshalling failures and/or
type conflicts.

Failures related to RMI class loading can occur even in applications with-
out any obvious faults. Mixing of classes from different codebases may occur
unbeknownst to an application, either because the application does not track
the sources of objects, does not have visibility into third party code perform-
ing the mixing (which may itself have been loaded remotely), or because the
mixing occurs inadvertently as the result of codebase loss in a separate process.
Unmarshalling errors may also result from codebase loss or misconfiguration in
another process.

Debugging, fixing, and avoiding problems caused by RMI class loading re-
quires low-level knowledge of how RMI class loading works. To understand the
causes of type conflicts and codebase loss, one must comprehend at a minimum
the distinction between compile-time types and run-time types, the role of class
loaders in defining type identity, class loader delegation, the function of the con-
text class loader, the concept of codebases, and the relation of codebases to the
codebase loaders created by the RMIClassLoader provider in effect. Addressing
RMI class loading failures involves correspondingly arcane techniques, such as
setting the context class loader to a different value, removing classes from a
process’s class path, or marking particular classes as preferred. To all but those
already well-versed in RMI class loading, these methods do not correspond to
any high level, intuitive notions of solutions. Encapsulation is diminished, since
using a service requires knowledge of implementation—not of the service itself,
but of the underlying mechanisms responsible for loading it.

Conceptually, RMI class loading presents a model of types that is difficult
to reason about at a system-wide level. There is no global, fixed type hierar-
chy. Instead, relationships between classes may differ from process to process,
depending on class loader formations assembled individually by each process
at run time, whose shapes are influenced by variable factors such as the set of
classes locally loadable by each process, context class loader settings, and the
paths traveled by objects prior to receipt.

The dependence of RMI class loading on mechanisms and configuration ex-
ternal to the core application reduces ease of use, while increasing the likelihood

25

of class loading and codebase problems. JAR files must be packaged with cor-
rect contents and preferred class settings, and applications must be configured
to export the proper codebase. Because these actions are performed during de-
ployment, they cannot be verified through compile-time analysis. Furthermore,
since semantic information about codebases—such as which classes should be
made downloadable to other processes, or which types should be shared with
code loaded from other sources—is not encoded in the application, there is no
guaranteeably accurate metadata on which to base run-time checking. This
places an extra burden on deployers: to fix configuration errors, they too must
understand aspects of the RMI class loading model.

Pitfalls aside, even a properly developed and deployed Jini or Java RMI ap-
plication may be artificially limited by the RMI class loading model. Codebases
are a straightforward example: marshalled objects cannot extend beyond the
reach of their codebase, across time (if the codebase ceases to exist), space (if
communication to the codebase is not possible), and failures (if the codebase
crashes). One might attempt to work around this by reannotating classes with
new codebases, at the expense of probable type conflicts later on if the newly
annotated code happens to interact with its original copy.

A less obvious limitation is that downloaded code can only interact along
avenues of compatibility established, and therefore anticipated, at load-time.
If two classes downloaded from different codebases wish to share types that
are not resolvable locally in the host process, then the codebase loader of one
must delegate to the codebase loader of the other. This decision must be made
when the classes are defined—if proper delegation is not established at load-
time, perhaps because the full set of run-time interactions between downloaded
classes cannot be predicted, then the classes will not be able to interact through
common types.

6.2 Impediments to solutions

Architecturally, RMI class loading issues are less straightforward to solve than
they may appear.

Attempts to fix RMI class loading’s type compatibility problems are ham-
strung by the multi-function nature of class loaders. Intuitively, one might
imagine eliminating the possibility of type conflicts by defining all downloaded
classes in a single, unified class loader.21 The immediate benefit of this ap-
proach is that it would flatten the type namespace for downloaded code, mak-
ing it resemble more closely the compile-time type system. However, defining
all downloaded classes in the same class loader would mean that none could
be garbage collected until all were unreferenced, since class loaders determine
class lifespan. Because class loaders also serve as record of the locations from
which classes were loaded, using a single class loader would complicate tracking
of codebases.22 Finally, imposing a flat namespace on downloaded code would

21Informally, this approach has come to be called the “big happy class loader” model.
22One might instead refer to the java.security.CodeSource associated with a class to

determine its codebase annotation, though this would only allow a single codebase per class

26

mean that only a single class definition, copy of class state, and set of security
permissions could be bound to a given class name, which could be problematic in
situations where multiple remote parties (perhaps trusted to differing degrees)
each wish to provide their own copy of a class, and to be insulated from the
actions of competing versions.

Codebase issues also defy easy solutions [13]. It is tempting to suggest that
marshalling streams should include class definitions inline, rather than refer-
encing them indirectly through codebase annotations. However, bundling class
definitions for annotated classes alone would be insufficient—the marshalling
stream would also need to contain definitions for any classes transitively ref-
erenced by them that receiving processes could not locally resolve. Receiving
processes might also require resource files and metadata that are associated with
classes in the stream, but not part of their class definitions. Including the full set
of necessary class definitions, resource files, and metadata in each marshalling
stream would be prohibitively wasteful in the common cases where instances of
a given class or set of classes are repeatedly sent from one process to another,
or written to storage in marshalled form.

There are other complications as well: with class definitions passed inline,
there would be no codebase information available on which to base permission
grants (though one might argue that the transience of codebase identity makes
it a non-ideal foundation for security in the first place). For an object passed
through a third party, the receiver would have to trust that the intermediary
did not tamper with the code. Obtaining the class definitions to include in the
marshalling stream would also present a technical snag: class loaders are not
required to make accessible the raw class definitions of the classes they load
(even though most currently do).

An alternate scheme would be to retain on-demand loading of class defi-
nitions, but always load from the immediate sender of the object, effectively
rehosting the codebase with each transmission hop. This would require revis-
iting the way in which RMI employs class loaders, however: given the current
class loader structure, in which codebase loader instances are tied to codebases,
altering the codebase of a class would cause it to be defined in a different code-
base loader, again leading to type incompatibility with other versions of itself.

6.3 Future directions

There are no readily apparent improvements within the bounds of the current
RMI class loading model that address its remaining issues. This suggests that
comprehensive solutions must be found elsewhere, by reconsidering RMI class
loading at a more fundamental level.

At least two approaches are possible. One is to expose type compatibility,
code downloading, and other remote class loading considerations in the Java
RMI and Jini programming models.23 For example, to marshal an object, an

name to be remembered.
23This approach was suggested by Peter Jones.

27

application may be asked to specify, through library calls or source code anno-
tations, values controlling or describing how the object’s code is sent. Similarly,
unmarshalling an object might require application input on how the types and
classes of the object should fit into the receiving environment. Code location
information (or, in some situations, the code itself) could be represented explic-
itly as data members of an envelope object wrapped around each marshalled
object. One could argue that extra mechanisms such as these deserve a place in
the programming model because remote class loading, much like remote com-
munication in general, cannot be made fully transparent to applications [14].
An advantage of this approach is that it could be implemented on top of the
Java platform as it exists today, at the expense of extra (perhaps necessary)
complication for developers.

Another approach is to revise the class loading mechanism itself. RMI class
loading effectively establishes a distributed type system, whose characteristics
are dictated to a significant degree by particulars of class loading in its current
form. One might instead work in the opposite direction, starting with require-
ments and desired properties of a distributed type system, and deriving from
those the underlying mechanisms needed to achieve them. A likely first step
in formulating the type system would be to pry apart the multiple functions of
class loaders, considering type compatibility, class identity, class lifetime, sub-
process isolation, security permissions, and code location as distinct issues that
may warrant separate mechanisms.24

Such a type system might also provide an opportunity to tackle other more
general mobile code issues. Versioning is one: in distributed systems that are
not centrally deployed, or that stay running over long periods of time, different
versions of types and code inevitably emerge. A type system geared towards dis-
tributed interactions would ideally provide a vocabulary for identifying different
versions of entities, and describing the relationships between them.

Platform issues are another consideration. Mobile code may depend on as-
pects of the environment into which it is loaded, such as certain local APIs
or resources. Most Java RMI- and Jini-based systems currently handle these
issues through out-of-band agreement on a minimum set of classes and facilities
that downloaded code can assume to be present in each receiving process. A
distributed type system might offer a way to describe the external dependencies
of a class or module, allowing mobile code and objects to be safely matched
with processes capable of supporting them.

Acknowledgments

Thanks to Tim Blackman, Jane Loizeaux, Victor Luchangco, Bob Scheifler, Jim
Waldo, and Ann Wollrath for helpful feedback on earlier drafts of this paper.

24For example, subprocess isolation could be accomplished through the Isolate mechanism
proposed by JavaTM Specification Request (JSR) 121 [15, 16].

28

References

[1] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java Virtual
Machine. In Proceedings of the 13th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 36–
44, 1998.

[2] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification,
Second Edition, chapter 5. Addison-Wesley, 1999.

[3] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Second Edition, chapter 12. Addison-Wesley, 2000.

[4] Vijay Saraswat. Java is not type-safe. http://matrix.research.att.
com/vj/bug.html, August 1997.

[5] Li Gong, Gary Ellison, and Mary Dageforde. Inside Java 2 Platform Secu-
rity, Second Edition, chapter 4. Addison-Wesley, 2003.

[6] Sun Microsystems. Java 2 Standard Edition JAR File Specification. http:
//java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html, 1999.

[7] Sun Microsystems. Java 2 Standard Edition Extension Mecha-
nism Architecture. http://java.sun.com/j2se/1.4.2/docs/guide/
extensions/spec.html, 1999.

[8] Sun Microsystems. Java Remote Method Invocation Specification. http:
//java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmiTOC.html, 2002.

[9] Jim Waldo et al. The Jini Specifications, Second Edition. Addison-Wesley,
2000.

[10] Sun Microsystems. Java Object Serialization Specification. http://java.
sun.com/j2se/1.4/docs/guide/serialization/spec/serialTOC.html,
2002.

[11] Sun Microsystems. API Documentation for the net.jini.url.httpmd
Package. http://java.sun.com/products/jini/2.0/doc/api/net/
jini/url/httpmd/package-summary.html, 2003.

[12] Sun Microsystems. API Documentation for the net.jini.loader.pref
Package. http://java.sun.com/products/jini/2.0/doc/api/net/
jini/loader/pref/package-summary.html, 2003.

[13] Robert Scheifler. “Re: Code download concerns”. Posting to the
rmi-users@java.sun.com mailing list, June 2001.

[14] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A Note on
Distributed Computing. Technical Report TR-94-29, Sun Microsystems,
November 1994.

29

[15] Sun Microsystems. Java Specification Request 121: Application Isola-
tion API Specification. http://http://www.jcp.org/en/jsr/detail?
id=121, 2005.

[16] Grzegorz Czajkowski and Laurent Daynès. Multitasking without Compro-
mise: a Virtual Machine Evolution. In Proceedings of the 16th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 125–138, 2001.

30

About the author

Michael Warres is a researcher at Sun Microsystems Laboratories, focusing on
large-scale distributed systems for managing sensor data. Previously, he was a
member of the Jini network technology development team, where he worked on
discovery protocols, security infrastructure, Java RMI, and object serialization.
He holds Sc.B. and Sc.M. degrees in Computer Science from Brown University.

31

	Class Loading Issues in Java™ RMI and Jini™ Network Technology
	Abstract
	Copyright
	I. INTRODUCTION
	II. CLASS LOADING
	III. RMI CLASS LOADING
	IV. ISSUES
	V. PREFERRED CLASS LOADING
	VI. DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES
	ABOUT THE AUTHOR

