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Abstract 

Secure group communication is crucial for  building dis- 
tributed applications that work in dynamic environments 
and communicate over unsecured networks (e.g. the Inter- 
net). Key agreement is a critical part of providing security 
services for group communication systems. Most of the cur- 
rent contributoty key agreement protocols are not designed 
to tolerate failures and membership changes during execu- 
tion. In particular; nested or cascaded group membership 
events (such as partitions) are not accommodated. 

In this paper we present the first robust contributory 
key agreement protocols resilient to any sequence of events 
while preserving the group communication membership 
and ordering guarantees. 

1 Introduction 

The explosive growth of the Internet has increased both 
the number and the popularity of applications that require a 
reliable group communication infrastructure, such as voice- 
and video-conferencing, white-boards, distributed simula- 
tions, and replicated servers of all types. 

Secure group communication is crucial for building dis- 
tributed applications that work in dynamic network envi- 
ronments and communicate over insecure networks such as 
the global Internet. Key management is the base for provid- 
ing common security services (data secrecy, authentication 
and integrity) for group communication. There are several 
approaches to group key management. 
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One approach relies on a single, centralized entity, to 
generate keys and distribute them to the group. In this case, 
a so-called key server maintains long-term shared keys with 
each group member in order to enable secure two-party 
communication for the actual key distribution. A specific 
form of this solution uses a fixed trusted third party (TTP) 
as the key server. This approach has two problems: 1 )  
the TTP must be constantly available and 2 )  a TTP must 
exist in every possible subset of a group in order to sup- 
port continued operation in the event of network partitions. 
The first problem can be addressed with fault-tolerance and 
replication techniques. The second, however, is impossi- 
ble to solve in a scalable and efficient manner. We note, 
however, that centralized approaches work well in a one- 
to-many multicast scenario since a TTP (or a set thereof) 
placed at, or very near, the source of communication can 
support continued operation within an arbitrary partition as 
long as it includes the source. (Typically, one-to-many set- 
tings only aim to offer continued operation within a single 
partition that includes the source; whereas, many-to-many 
environments must offer the same in an arbitrary number of 
partitions.) 

Another key management approach involves dynami- 
cally selecting - in some deterministic manner - a group 
member charged with the task of generating keys and dis- 
tributing them to other group members. This approach is 
robust and more amenable to many-to-many type of group 
communication since any partition can continue operation 
by electing a temporary key server. The drawback here is 
that, as in the TTP case, a key server must establish long- 
term pairwise secure channels with all current group mem- 
bers in order to distribute group keys. Consequently, each 
time a new key server comes into play, significant costs 
must be incurred to set up these channels. Another disad- 
vantage, again as in the TTP case, is the reliance on a single 
entity to generate good (i.e., cryptographically strong, ran- 
dom) keys. 

In contrast to the above, contributory key management 
asks each group member to contribute an equal share to the 
common group key (computed as a function of all mem- 
bers' contributions). This approach avoids the problems 
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with the single points of trust and failure. Moreover, some 
contributory methods do not require the establishment of 
pairwise secret channels among group members. However, 
current contributory key agreement' protocols are not de- 
signed to tolerate failures and group membership changes 
during execution. In particular, nested (or cascaded) fail- 
ures, partitions and other group events are not accommo- 
dated. This is not surprising since most multi-round cryp- 
tographic protocols do not offer built-in robustness with the 
notable exception of protocols for fair exchange [ 11.  

The main goal of this paper is to demonstrate how prov- 
ably secure, multi-round group key agreement protocols 
can be combined with reliable group communication ser- 
vices to obtain provably fault-tolerant group key agree- 
ment solutions. More precisely, we present two robust con- 
tributory key agreement protocols which are resilient to 
any sequence (even cascaded) of events while preserving 
group communications membership and ordering guaran- 
tees. Both protocols are based on Cliques GDH contribu- 
tory key agreement that generalizes on the two-party Diffie- 
Hellman [2] key exchange. Our first protocol utilizes mem- 
bership information provided by the group communication 
system in order to appropriately re-start Cliques GDH key 
agreement in an agreed-upon manner every time the group 
changes. The second protocol optimizes the performance of 
common cases at the cost of a more sophisticated protocol 
state machine. 

The rest of the paper is organized as follows. The re- 
mainder of this section focuses on our motivation in pur- 
suing this work and overviews related work. We then 
present Secure Spread, a secure group communication sys- 
tem which utilizes our key agreement protocols. The two 
subsequent sections present two robust key agreement pro- 
tocols. Finally, we summarize our work and discuss some 
future directions. 

1.1 Motivation 

As mentioned earlier, a prominent challenge encoun- 
tered in securing group communication is in developing 
robust, reliable and fault-tolerant group key management 
mechanisms that perform well in practice. While the moti- 
vation for security services (key management, in particular) 
in a tightly-coupled group communication setting is fairly 
intuitive, the need for reliable group communication ser- 
vices by the group key management is less obvious. We 
claim that reliable and sequenced message delivery is im- 
portant (and even crucial) for cryptographic group proto- 
cols. Asynchronous network behavior must be handled by 
the underlying group communication layer, which prompts 
the need for a highly reliable group communication service. 
~~ ~ 

'We use the term "agreement," as opposed to "distribution", to empha- 
size the contributory nature of the key management. 

This dependence is both natural and mutual. It is nat- 
ural since secure dynamic peer groups always require cer- 
tain communication guarantees. (Best-effort datagram ser- 
vice is not usually a viable option, whereas, it may suffice 
for one-to-many type groups encountered in Internet mul- 
ticast settings.) It is mutual since reliable group communi- 
cation systems are of limited utility in open networks with- 
out strong security services and guarantees. Thus, we have 
interdependence among reliable group communication and 
group key management protocols. 

Cryptographic protocol designers are primarily con- 
cerned with security and typically assume that protocol ro- 
bustness is handled by the particular application or by the 
underlying communication layer. This is reasonable in two- 
party protocols where communication failures are relatively 
easy to handle and recover from. The picture changes dra- 
matically in group protocols where the behavior model is 
richer. 

Multi-round group key management protocols cannot be 
expected to run to completion without being possibly inter- 
rupted by various group membership events: joins, leaves, 
disconnects, partitions, merges or any combination thereof. 

Our previous work [3] focused on the performance eval- 
uation in the scenario with no network faults or cascaded 
events and provided a good insight of the overall cost of 
high security in a group communication environment. The 
present work goes into the details of a complete solution 
that handles every possible combination of group member- 
ship events. The contribution of this paper, therefore, is the 
design, and the proof of correctness of, a robust contribu- 
tory key agreement algorithm. 

1.2 Related Work 

In this section we consider related work in two areas: 
group key management and reliable group communication. 

1.2.1 Group Key Management 

Cryptographic techniques for securing all types of 
multicast- or group-based protocols require all parties to 
share a common key. This requires a Group Key Manage- 
ment (GKM) protocol to provide methods for generating 
new group keys and updating existing keys. GKM proto- 
cols generally fall into two classes: 

Protocols designed for large-scale (e.g., IP Multi- 
cast) applications with a one-to-many communication 
paradigm and relatively weak security requirements. 

Protocols designed to support tightly-coupled dy- 
namic peer groups with modest scalability require- 
ments, a many-to-many communication paradigm and 
strong security requirements. 
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A number of GKM protocols supporting abstract peer 
groups have been developed in the last decade [4], [51, [61, 
[7], [8], 191. All, except [9], extend the well-known Diffie- 
Hellman key exchange [2] method to group of n parties. 
These protocols vary in degrees of protection from hos- 
tile attacks and in their performance characteristics. (For 
an in-depth comparison, see [8].) In this paper, we make 
use of the CLIQUES toolkit which implements - among 
other methods - a suite of protocols, called generic Group 
Diffie-Hellman (GDH). GDH offers contributory authen- 
ticated group key agreement and handles dynamic mem- 
bership changes [7, 81. The entire protocol suite has been 
proven secure with respect to both passive and active at- 
tacks. 

1.2.2 Reliable Group Communication 

Reliable group communication in LAN environments have 
a well-developed history beginning with ISIS [IO], and 
more recent systems such as Transis [ l l ] ,  Horus [12], 
Totem [13], and RMP [14]. These systems explored sev- 
eral different models of Group Communication such as Vir- 
tual Synchrony [ 1.51 and Extended Virtual Synchrony [ 161. 
More recent work in this area focuses on scaling group 
membership to wide-area networks [17], [ 181. 

Research in securing group communication is fairly new. 
The only actual implementations of group communication 
systems that focus on security (in addition to ours), are Se- 
cureRing [I91 project at UCSB, and the HorusEnsemble 
work at Cornel1 [20]. The SecureRing system protects a 
low-level ring protocol by using cryptographic techniques 
to authenticate each transmission of the token and each data 
message received. The Ensemble security work is the state- 
of-the-art in secure reliable group communication and ad- 
dresses problems as group keys and re-keying. It also al- 
lows application-dependent trust models and optimizes cer- 
tain aspects of group key generation and distribution proto- 
cols. In comparison with our approach, Ensemble uses a 
different group key structure that is not contributory and 
provides a different set of security guarantees. 

Recent research on Bimodal-Multicast, Gossip-based 
protocols [21] and the Spinglass system has largely focused 
on increasing the scalability and stability of reliable group 
communication services in more hostile environments such 
as wide-area and lossy networks by providing probabilistic 
guarantees about delivery, reliability, and membership. 

2 A Secure Group Communication Environ- 
ment 

The work discussed in this paper has involved inte- 
grating the Spread wide-area group communication system 
with the group key agreement protocols in the Cliques GDH 

protocol suite. In this section we overview both the Spread 
and Cliques toolkits. 

2.1 Spread Toolkit 

Spread [22], [23] is a group communication system for 
wide and local area networks. It provides all the services of 
traditional group communication systems, including: un- 
reliableheliable delivery, FIFO, causal, total ordering, and 
membership services with strong semantics. 

Spread creates an overlay network that can impose an ar- 
bitrary network configuration (such as point-to-multi-point, 
tree, ring, tree-with-subgroups or any combination thereof) 
to adapt the system to different network environments. The 
Spread architecture allows multiple protocols to be used on 
links both between and within sites. The Spread toolkit 
is very useful for applications that need traditional group 
communication services (such as causal and total ordering, 
membership and delivery guarantees) but also need to op- 
erate over wide-area networks. 

The system consists of a long-running daemon and a li- 
brary linked with the application. 

Spread scales well with the number of groups used by 
the application without imposing any overhead on network 
routers. Group naming and addressing is not a shared re- 
source (as in IP multicast addressing) but rather a large 
space of strings which is unique to a collaboration session. 

The toolkit can support a large number of different col- 
laboration sessions, each of which spans the Internet but has 
only a moderate number of participants. This is achieved by 
using unicast messages over the wide-area network, routing 
them between Spread nodes on the overlay network. 

The Spread system provides two different semantics: 
Extended Virtual Synchrony [ 16,241 and View Synchrony 
[25]. In this paper, and for our implementation we only use 
the View Synchrony semantics of Spread. 

The Spread toolkit is available publicly and is being 
used by several organizations for both research and prac- 
tical projects. The toolkit supports cross-platform applica- 
tions and has been ported to several Unix platforms as well 
as Windows and Java environments. 

2.2 Cliques Toolkit 

Cliques [8, 7, 261 is a cryptographic toolkit providing 
key management services for dynamic peer groups. Cliques 
includes several protocol suites: 

0 GDH: based on group extensions of the 2-party Diffie- 
Hellman key exchange [7, 81; provides fully contrib- 
utory authenticated key agreement. GDH is fairly 
computation-intensive requiring O(n) cryptographic 
operations upon each key change. It is, however, 
bandwidth-efficient. 
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CKD: centralized key distribution with the key server 
dynamically chosen from among the group members. 
A key server uses pairwise Diffie-Hellman key ex- 
change to distribute keys. CKD is comparable to GDH 
in terms of both computation and bandwidth costs. 
TGDH: tree-based group Diffie-Hellman [26]; TGDH 
is more efficient than the above in terms of com- 
putation as most operations require O(1og n) crypto- 
graphic operations. (The security of TGDH is slightly 
weaker and it lacks several other features not germane 
in this context.) 
BD: a protocol based on Burmester-Desmedt [5] vari- 
ation of group Diffie-Hellman. BD is computation- 
efficient requiring constant number of exponentiations 
upon any key change. However, communication costs 
are significant with two rounds of n-to-n broadcasts. 

All Cliques protocol suites offer key independence, perfect 
forward secrecy and resistance to known key attacks. (See 
[27, 81 for precise definitions of these properties.) 

In this paper, we focus only on the GDH protocol suite 
within the Cliques toolkit. As mentioned earlier, our spe- 
cific goal is to take a provably secure, multi-round group 
key agreement protocol (GDH) and, by combining it with 
the reliable group communication service (Spread), obtain 
a provably fault-tolerant group key agreement solution. 

Cliques GDH API [28] is the implementation of the 
GDH protocol suite. It contains GDH cryptographic prim- 
itives while assuming the existence of a reliable communi- 
cation platform for transporting protocol messages. GDH 
assigns a special role to the last member to join a group. 
This role, referred to as the group controller, floats as group 
membership changes. A group controller is charged with 
initiating key updates following membership changes2 The 
following operations trigger a key update: 1) join - add a 
single new member to the group (handled as a special case 
of merge); 2) merge - add multiple members to the group; 
3) leave: one member voluntarily leaves the group (handled 
as a special case of partition); 4) partition: multiple mem- 
bers leave the group due to expulsion or a network event. 

3 System Model 

In this section we specify the failure and the group com- 
munication models used in this paper. 

3.1 Failure Model 

We consider a distributed system, a group of processes 
executing on one or more computers and coordinating ac- 
tions by exchanging messages. The message exchange is 

*GDH API also allows a key refresh operation which may be initiated 
only by the current controller. 

achieved via asynchronous multicast and unicast messages. 
Messages can be lost. 

The system is subject to process crashes and recoveries. 
A crash of any component of the process such as the key- 
agreement layer, the Cliques library, or the group commu- 
nication system is considered a process crash. It is assumed 
that the crash of one of these components is detected by all 
the other components and is treated as a process crash. 

Also, the system is prone to partitions which may re- 
sult a network being split into disconnected subnetworks. 
When such a partition is fixed, the disconnected compo- 
nents merge into a larger connected component. While pro- 
cesses are in separate disconnected components they cannot 
exchange messages. 

We assume that message corruption is masked by a 
lower layer. Byzantine failures are not considered. 

Our intruder model takes into account only outside in- 
truders, both passive and active. An outsider is anyone who 
is not a current group member. (Of course, any former and 
future member, is an outsider according to this definition.) 
We do not consider insider attacks since our threat model 
concentrates on the secrecy of group keys and the integrity 
of the group membership (i.e., the inability to spoof au- 
thenticated membership). Consequently, insider attacks are 
not relevant because a malicious insider can always reveal 
the group key and/or its own private key thus allowing for 
fraudulent membership authentication. 

Passive outsider attacks involve eavesdropping with the 
aim of discovering the group key(s). This attack type has 
been proven to be computationally infeasible in [7]. Active 
outsider attacks involve injecting, deleting, delaying and 
modifying protocol messages. Some of these attacks aim 
to cause denial of service; we do not address these denial 
of service attacks. Attacks with the goal of impersonating a 
group member are prevented by the use of public key-based 
signatures. (All protocol messages are signed by the sender 
and verified by all receivers.) 

3.2 Group Communication Model 

A group communication system usually provides fun- 
damental services such as membership as well as dissem- 
ination, reliability and ordering of messages. The mem- 
bership service notifies the upper-level application with a 
list of group members each time the group changes. This 
notification-of-membership service is called a view. 

Several different sets of membership properties have 
been defined in the literature. Each provides a different 
set of semantic guarantees to the application, and are usu- 
ally called Virtual Synchrony semantics or some variant on 
the name. The many variations of virtual synchrony are all 
based on the property that processes moving together from 
one view to another deliver the same set of messages in the 
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former membership view. 
Some group communication systems have been built 

[12], [14], [I81 that approximate the virtual synchrony 
model along with some related properties. However, each 
system does not provide the exact same set of properties, 
and to the best of our knowledge a canonical “Virtual Syn- 
chrony model” of an entire system has not been defined in 
the literature. A good survey describing many of the varia- 
tions of different properties for virtual synchrony semantics 
can be found in [291. 

Virtual synchrony strengthens the shared state of the sys- 
tem by delivering messages in the same membership as they 
were sent in. This enables the use of a shared key to en- 
crypt data, since the receiver is guaranteed to have the same 
membership view as the sender and therefore the same key 
(ignoring for now some constraints on rekeying). 

This work assumes that the group communication sys- 
tem supports virtual synchrony semantics as they are de- 
fined below. The description of the properties is largely 
based on the survey [29] and the description of the Ex- 
tended Virtual Synchrony semantics [ 161. 

Note that we define that some event occurred in view U 

at process p if the most recent view installed by process p 
was U .  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Self Inclusion 

Local Monotonicity 
If process p installs a view U then p is a member of U .  

If process p installs a view w after installing a view U‘ 

then the identifier id of U is greater than the identifier 
id‘ of U‘. 

A message is delivered in the view that it was sent in. 

If process p delivers a message m in a view U ,  then 
there exists a process q that sent m in U causally before 
p delivered m. 

No Duplication 
A message is not sent twice. A message is not deliv- 
ered twice to the same process. 

If process p sends a message m, then p delivers m 
unless it crashes. 

1) If two processes p and q install the same view, and 
q is included in p’s transitional set for this view then 
p’s previous view was identical to q’s previous view. 
2) If two processes p and q install the same view, and 
q is included in p’s transitional set for this view then p 
is included in q’s transitional set for this view. 

Virtual Synchrony 
Two processes that move together’ through two con- 

Sending View Delivery 

Delivery Integrity 

Self Deliver),: 

Transitional Set 

- 
31f process p installs a view v with process q in its transitional set and 

process q installs v as well, then p and q are said to move together. 

secutive views deliver the same set of messages in the 
former. 

If message m causally precedes message m’, and both 
are sent in the same view, then any process q that de- 
livers m’ delivers m before m’. 

1) Agreed delivery maintains causal delivery guaran- 
tees. 
2) If agreed messages m and m’ are delivered at pro- 
cess p in this order, and m and m‘ are delivered by 
process q ,  then m’ is delivered by q after it delivers m. 
3) If agreed messages m and m’ are delivered by pro- 
cess p in view U in this order, and m‘ is delivered by 
process q in U before a transitional signal, then q deliv- 
ers m. If messages m and m’ are delivered by process 
p in view U in this order, and m’ is delivered by pro- 
cess q in U after a transitional signal, then q delivers m 
if T ,  the sender of m, belongs to q’s transitional set. 

1) Safe delivery maintains agreed delivery guarantees. 
2) If process p delivers a safe message m in view U 

before the transitional signal, then every process q of 
view U delivers m unless it crashes. If process p de- 
livers a safe message m in view U after the transitional 
signal, then every process q that belongs to p’s transi- 
tional set delivers m after the transitional signal unless 
it crashes. 

9. Causal Delivery 

10. Agreed Delivery 

11. Safe Delively 

4 A Basic Robust Algorithm 

This section discusses the details of a basic robust key 
agreement algorithm. Throughout the remainder of the pa- 
per, we mean by the group communication system (GCS), 
a group communication system providing the virtual syn- 
chrony semantics. Our basic algorithm is based on the 
Cliques GDH IKA.2 protocol. Briefly, this protocol works 
as follows (see [7] for a complete description): 

When an additive group view change happens (a join 
or a merge) the current group controller generates a new 
key token by refreshing its contribution to the group key 
and passes the token to one of the new members. When 
that new member receives this token, it adds its own con- 
tribution and passes the token to the next new member4. 
Eventually, the token reaches the last new member. This 
new member, who is slated to become the new group con- 
troller, broadcasts the token to the group without adding 
its contribution. Upon receiving the broadcast token, each 
group member (old and new) factors out its contribution 

4The new member list and its ordering is decided by the underlying 
group communication system; Spread in our case. The actual order is 
irrelevant to Cliques. 
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and unicasts the result (called a factor-out token) to the new 
controller. The new controller collects all the factor-out to- 
kens, adds its own contribution to each of them, builds a 
list of partial keys and broadcasts the list to the group. Ev- 
ery member can then obtain the group key by factoring in 
its contribution. (This is actually performed with modular 
exponentiation.) 

When some members leave the group, the group con- 
troller (who, at all times, is the most recent group member) 
removes their corresponding partial keys from the list of 
partial keys, refreshes each partial key in the list and broad- 
casts the list to the group. Each remaining member can then 
compute the shared key. 

The algorithm described above is secure and correct. Se- 
curity is preserved independently of any sequence of mem- 
bership events, while correctness holds only as long as no 
additional group view change takes place before the proto- 
col terminates. 

To elaborate on this claim, consider what happens if a 
subtractive (leave or partition) group membership event oc- 
curs while the above protocol is in progress, for example, 
while the group controller is waiting for individual unicasts 
from all group members. Since the Cliques protocol is un- 
aware of the membership change (which is "visible" only 
to the group communication system), the group controller 
will not proceed until all factor-out tokens (including those 
from former members) are collected. Therefore, the sys- 
tem will block. Similar scenarios are also possible, e.g., if 
one of the new members crashes while adding its contribu- 
tion to a group key. In this case, the token will never reach 
the new group controller and the protocol will, once again, 
simply block. 

If the nested event is additive (join or merge), the proto- 
col operates correctly. In other words, it runs to completion 
and the nested event is handled serially. (We note, how- 
ever, that this is not optimal since, ideally, multiple additive 
events can be "chained" effectively reducing broadcasts and 
factor-out token implosions.) 

As the above examples illustrate, the protocol does not 
function correctly in the face of cascaded subtractive mem- 
bership events. This behavior is not acceptable for reliable 
group communication systems that aim to provide a high 
degree of robustness and fault-tolerance. 

A natural and correct solution to this problem is as fol- 
lows: every time a group view change occurs, the group de- 
terministically chooses a member (say, the oldest) and runs 
the Cliques GDH protocol with the chosen member initial- 
izing it. Note that this approach costs twice in computation 
and O(n)  more in the number of messages for the common 
case with no cascading membership events. This will be 
rectified in the second protocol described in Section 5 .  

When the key-agreement protocol is integrated with a 
group communication system and virtual synchrony se- 

I ,  

G r ou p C om m u n i cati on 
(Virtual Synchrony) 

Network t 
Figure 1. Secure group communication 
model 

mantics must be preserved, extra care must be taken in 
order to provide all its guarantees to the application, in- 
cluding delivery of the correct views, transitional signal 
and transitional sets. We will elaborate on these issues 
later. Figure 1 presents the architecture of a secure group 
communication system. The system uses the following 
types of messages: Cliques messages (final-tokenmsg, 
partial-tokenmsg, keylist-msg, fact-outmsg), which are 
specific to the key agreement protocol (see [28]); mem- 
bership notification messages (membmsg); transitional 
signal messages (transsignal-msg); application messages 
(datamsg); flush mechanism messages (flushxequestmsg, 
flush-okmsg). 

To satisfy Sending View Delivery without discarding 
messages from live and connected members, a group com- 
munication system must block the sending of messages be- 
fore the new membership is installed. In order to imple- 
ment Sending View Delivery the group communication sys- 
tem sends a message (flushxequestmsg) to the client ask- 
ing for permission to install a new membership before ac- 
tually creating the membership. The application responds 
with an acknowledgement message (flush-okmsg) which 
follows all the messages sent by the application in the old 
view. After sending the acknowledgement message, the ap- 
plication is not allowed to send any messages until the new 
view is delivered. In Figure 1, the key-agreement algorithm 
(KAA) interacts with both the application and GCS. KAA 
implements the blocking mechanism transparently. When 
a flushxequestmsg message is received from GCS, it is 
delivered to the user application. When the application ac- 
knowledgement message is received it is sent down to GCS. 

A process starts executing the algorithm by invoking the 
join primitive of the key-agreement module which trans- 
lates into a group communication join call. In any state 
of the algorithm a process can voluntarily leave by invok- 
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ing the leave primitive of the key-agreement module which WAITTOR-PARTIAL-TOKEN (PT): in this state the 
translates it into a group communication leave call. process is waiting for a partial-tokenmsg message; 

The specification of the algorithm is defined in terms of the possible events are Partial-Token, FlushRequest 
the following received events which are associated with a and TransitionalSignal; Usermessage and Se- 
specific group: cureTlush-Ok are illegal; all other events are not pos- 

Partial-Token: a partial token message (par- 
tial-tokenmsg) was received by the KAA from 
the GCS. 
Final-Token: a final token message (final-tokenmsg) 
was received by the KAA from the GCS. 
Fact-Out: a factor out message (factor-outmsg) was 
received by the KAA from the GCS. 
KeyList: a key list message (keylist-msg) was re- 
ceived by the KAA from the GCS. 
Usermessage: a data application message (datamsg) 
was received by the KAA from the application. The 
user can send messages using broadcast or unicast ser- 
vices. 
Datamessage: a data application message (datamsg) 
was received by the KAA from the GCS. 
Transitional-Signal: a transitional signal message 
(trans-signalmsg) was received by the KAA from the 
GCS. 
Membership: a membership message (membmsg) 
was received by the KAA from the GCS. 
FlushRequest: a flush request message 
(flushiequestmsg) was received by the KAA 
from the GCS. 
SecureJlushRequest: a flush request message 
(flushiequestmsg) was received by the application 
from the KAA. 
SecureJlush-Ok: a flush acknowledge message 
(flush-okmsg) was received by the KAA from the ap- 
plication. 

Note that the same type of message can be asso- 
ciated with different events, depending on the source 
of the message. For example, both FlushRequest 
and SecureJlush-Request events are associated with a 
flushxequestmsg message, but in the first case the mes- 
sage is received by the KAA from the application, while in 
the second case the message is received by the application 
from the KAA. 

The algorithm consists of a state machine having the fol- 
lowing states : 

SECURE! (S): in this state the secure group is func- 
tional, all of the members have the group key 
and can communicate securely; the possible events 
are Datamessage, Usermessage, SecureTlush-Ok, 
FlushRequest, and TransitionalSignal; getting a Se- 
cureJlush-Ok without receiving a FlushRequest is il- 
legal; all other events are not possible. 

sible. 
WAITTORFINAL-TOKEN (FT): in this state the 
process is waiting for a final-tokenmsg message; 
the possible events are Final-Token, FlushRequest 
and Transitional-Signal; Usermessage and Se- 
cureTlush-Ok are illegal; all other events are not pos- 
sible. 
COLLECTFACT-OUTS (FO): in this state the pro- 
cess is waiting for N - 1 fact-outmsg messages 
(where N is the size of the group); the only possi- 
ble events are Fact-Out, FlushRequest, and Transi- 
tionalSigna1; Usermessage and SecureTlush-Ok are 
illegal; all other events are not possible. 
WAITTORKEYLIST (a): in this state the pro- 
cess is waiting for a key-listmsg message; the pos- 
sible events are KeyList, Flush-Request and Transi- 
tionalsignal; Userblessage and SecureTlush-Ok are 
illegal; all other events are not possible. 
WAITTOR-CASCADING-MEMBERSHIP (CM): in 
this state the process is waiting for are member- 
ship and transitional signal messages (membmsg 
and transsignalmsg); the possible events are Mem- 
bership, Transitional-Signal, Datamessage (possible 
only the first time the process gets in this state), Par- 
tial-Token, Final-Token, Fact-Out and KeyList (they 
correspond to Cliques messages from a previous in- 
stance of the key agreement protocol when cascaded 
events happen); Usermessage and SecureTlush-Ok 
are illegal; all other events are not possible. 

For an illegal event, an error message will be returned 
to the user. A process handles an event by performing two 
types of actions. The first type of action is a group commu- 
nication operation and can be either a message delivery, or a 
message send such as unicast, broadcast, or sendflush-ok. 
The second type of action is a key agreement specific ac- 
tion. This translates into either computation or access to 
Cliques state information 

As the state machine in Figure 2 shows, the Cliques 
GDH protocol remains intact, i.e., all of its protocol mes- 
sages are sent and delivered in the same order as specified 
in [7]. Therefore, the basic robust key agreement algorithm 
provides the same security guarantees as the Cliques GDH 
protocol. 

The complete proof that the algorithm presented above 
preserves virtual synchrony semantics as described in Sec- 
tion 3.2 as well as the detailed pseudocode were omitted 
because of space constraints, but they are included in the 
extended version of this paper [30]. 
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Notes: VS-se[ is delivered as part of the membership 
: All Cliques mcssages but key-list-msg are sent FIFO 
: A process can leave the group in any sLate Figure 2. Basic algorithm 

5 An Optimized Robust Algorithm 

In this section we show how the algorithm presented in 
the previous section can be optimized, such that the price 
paid for handling common, non-cascaded events is lower, 
while preserving the same set of group communication se- 
mantics and security guarantees. 

The basic algorithm presented in Section 4 is robust even 
when cascaded group events occur. Every time a mem- 
bership notification is delivered from the group communi- 
cation system, the algorithm ignores all the previous key 
agreement information and starts the merge protocol choos- 
ing a member from the new group to initialize it. Therefore, 
this algorithm pays more than necessary for computing a 
group key in a regular case, because it does not distinguish 
between a membership that finished without being inter- 
rupted and a cascaded membership. 

The algorithm described above can be optimized so that 
it distinguishes between these two cases. Every time the 
group view changes, the algorithm detects the cause of the 
group change Cjoin, leave, partition, merge or a combination 
of partition and merge) and invokes the Cliques GDH spe- 
cific protocol. For example, in the case where a leave oc- 
curred, the leave protocol is invoked. Computing a new key 
in the case that a leave or partition occurred, requires only 
one broadcast. Thus, leave events can be handled imme- 

diately with a lower communication and computation cost 
than the basic algorithm required. 

In the optimized key-agreement algorithm the process 
still starts executing the state machine by invoking the Join 
primitive. Also, at any moment, a process can voluntarily 
leave the algorithm by invoking the Leave primitive. 

The optimized algorithm utilizes the following two 
states in addition to those of the basic algorithm: 

0 WAITIOR-SELFJOIN (SJ): this is the initial state in 
which a process that joined a group enters the state ma- 
chine; the process is waiting for the membership mes- 
sage that notifies the group about its joining. In case 
a network event happens between the join request and 
the membership notification delivery, the GCS will re- 
port the cause of the group change as being a network 
event and the transitional set will contain only the join- 
ing member. The only possible event is a Membership. 
Userhlessage and SecureIlush-Ok events are illegal. 
All other events are not possible. 

0 WAITIORhlEMBERSHIP (M): in this state the pro- 
cess is waiting for a membership notification. The pos- 
sible events are: Transitional-Signal, Datahlessage 
and Membership. The membership notification can be 
caused by voluntarily events such as join or leave, or 
network events. Userhlessage and SecureMush-Ok 
events are illegal. All other events are not possible. 
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Figure 3. Optimized algorithm 

While a process starts the basic algorithm in the CM 
state, in the optimized algorithm a process starts the algo- 
rithm in state SJ. From the stable state (S state) if the group 
changed the process moves to the M state instead of mov- 
ing to the CM state as in the basic algorithm. From here, 
depending on the cause of the group change, the merge or 
the leave Cliques GDH protocols are invoked. Also, a com- 
bined network event which includes both joins and leaves 
simultaneously can be handled by a modified version of the 
Cliques GDH merge protocol. If another group change hap- 
pens before a key is computed, the process will move to the 
CM state and execute the basic algorithm. 

A diagram showing the state machine of the algorithm 
is presented in Figure 3. The corresponding pseudo-code 
along with the proof that the optimized algorithm presented 
above preserves virtual synchrony semantics described in 
Section 3.2 is omitted for space reasons but can be found in 
an extended version of this paper [30]. 

5.1 Handling Bundled Events 

Most group events are homogeneous in nature: leave 
(partition) or join (merge) of one or more members. How- 
ever, a group communication system can decide to bundle 
several such events if they occur in close proximity, i.e., 
within a very short time interval. The main incentive for 
doing so is to reduce communication costs and limit the 

impact and overhead on the application. 
Cliques provides two separate protocols that handle 

leave and merge events. Each of these protocols can triv- 
ially handle bundled events of the same type, i.e., the 
Cliques merge protocol can accommodate any combination 
of bundled merges and the Cliques leave protocol can do 
the same for any combination of leaves and partitions. A 
more interesting scenario occurs when a single member- 
ship event bundles mergedjoins with leaves/partitions. One 
obvious way to handle this type of event is to first invoke 
Cliques leave to process all leaves/partitions and then in- 
voke Cliques merge to process joins/merges. However, this 
is inefficient since the group would essentially perform two 
separate key agreement protocols where only one is truly 
needed. We can take advantage of the fact that both pro- 
tocols in Cliques are initiated by the group controller. Af- 
ter processing all leaves/partitions, the group controller can 
suppress the usual broadcast of new partial keys and, in- 
stead, forward the resulting set to the first merging/joining 
member thereby initiating a merge protocol. This saves an 
extra round of broadcast and at least one cryptographic op- 
eration for each member. 

6 Conclusions 

This work provides two robust key agreement algo- 
rithms. We prove that by integrating them with a group 
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communication systems supporting Virtual Synchrony, the 
group communication membership and ordering guarantees 
are preserved. 

We intend to explore and experiment with robustness 
and recovery techniques for a spectrum of other group key 
management mechanisms, such as the centralized approach 
and the Burmester-Desmedt protocol. 

Finally, several necessary services for a secure group 
communication could lead to interesting future work. 
They include services such as group member certification, 
intra-group authentication, private communication within a 
group and private communication between members and 
non-members of the group. 
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