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Abstract

Over the last 30 years the study of group key agreement has stimulated much work. And as a result of the
increased popularity of ad hoc networks, some approaches for the group key establishment in such networks
are proposed. However, they are either only for static group or the memory, computation and communication
costs are unacceptable for ad-hoc networks.

In this thesis some protocol suites from the literature ( 2d-cube, 2d-octopus, Asokan-Ginzboorg, CLIQUES,
STR and TGDH) shall be discussed. We have optimized STR and TGDH by reducing the memory, commu-
nication and computation costs. The optimized version are denoted by µSTR and µTGDH respectively.

Based on the protocol suites µSTR and µTGDH we present a Tree-based group key agreement Framework
for Ad-hoc Networks (TFAN). TFAN is especially suitable for ad-hoc networks with limited bandwidth and
devices with limited memory and computation capability.

To simulate the protocols, we have implemented TFAN, µSTR and µTGDH with J2ME CDC. The TFAN
API will be described in this thesis.
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1. Ad Hoc Networks

Ad hoc means in Latin ,,formed for“ or ,,concerned with one specific purpose“. And what is a wireless
ad hoc network? There is still no consistent definition of general ad hoc network properties. And it is
not easy to choose a suitable definition. After comparison of a few of definitions we choose that of NIST
[83] for our purpose. ,,A wireless ad hoc network is a collection of autonomous nodes or terminals which
communicate with each other by forming a multi-hop radio network and maintaining connectivity in a
decentralized manner“.

The principle behind ad hoc networking is multi-hop relaying, which means that the messages are trans-
mitted by the other nodes if the target node is not directly reachable. The absence of any central coordinator
and base station makes it difficult to manage the network. Figure 1.1 illustrates an example of an ad hoc
network which contains two laptops, two cell phones and two PDAs. The dashed line indicates the wireless
link. Since node A cannot reach node D directly, the data from A to D must be transmitted by nodes B and
C.

A B

E

F

C

D

Figure 1.1.: An ad hoc network

The nodes or terminals are such as smart sensors, cell phones, PDAs and laptops. The wireless data
transmission technologies such as Bluetooth [118] and 802.11 [44] allow efficient communication and are
widely used in military, commerce and private areas. A. Khalili et.al. [55] have listed a set of differences
between ad hoc networks and infrastructure based networks:

• No fixed topology: The network topology in an ad-hoc wireless network is highly dynamic due to
the mobility of nodes. They may move in and out of the range of each other. The topology changes if
one of those events happens, e.g. the route table and the multicast table must be changed accordingly.
This increases the difficulty to management the network.

• Limited energy: Mobile devices use generally battery power, which is exhaustible. In order to save
the energy, some devices may be in sleepy mode. During this period they are possibly not reachable,
or do not process traffic, or change to normal mode with latency. On one hand most wireless devices
use spread spectrum communications, which need the receiving and decoding of the signal. These are
expensive operations that consume much power. On the other hand some complex computations are
also very expensive, for example modular exponentiation, which makes it difficult to implement the
public key systems for ad hoc networks.

• Limited processor: Most mobile devices have cheap and slow processors, because fast processors
cost much more and the size should be as smart as possible to make it easy to take. Hence it takes
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much time to operate some complex computations. The most PDAs have currently processors of
several hundred MHz.

• Limited storage capability and other resources: Because of the size and cost restrictions, the most
mobile devices are equipped with limited storage capability. For example, iPAQ hx4700 series of HP
have only 192 MB memory. Due to the wireless technologies the network bandwidth is also limited.
For example, some PDAs of HP are equipped with WLAN 802.11b, and Bluetooth 1.2.

• Transient connectivity and availability: Many nodes may not be reachable at some time so that they
can save power.

• Each node is a router: The nodes out of the range of a fixed node can not be directly reached by this
node. They can only be reached by packet forwarding of other nodes.

• Shared physical medium: Unlike wired networks, every device within the range can access the
transmission medium.

• Lack of central management: Ad hoc networks can be established everywhere and every time.
Generally there is no central management available, and we can also not assume that any information
is shared.

Due to the lack of fixed infrastructure and limited resources, it will be much more complex to adapt
protocols and other technologies from the infrastructure based networks.

Now we have an outline of wireless network. In the following sections we will describe the infrastructure,
the routing and multicast routing of ad hoc networks.

1.1. Infrastructure

Since no consistent categories of ad hoc networks are available, we use the mostly used cases, namely mobile
ad hoc networks (MANETs) and smart sensor networks.

1.1.1. Mobile ad hoc networks (MANETs)

Along with the development of the next generation of wireless communication systems, there will be a need
for the rapid deployment of independent mobile users. Some examples of possible uses include students us-
ing laptops to participate in an interactive lecture, business associates sharing information during a meeting,
and emergency disaster relief personnel coordinating efforts after a hurricane or earthquake. Such network
scenarios cannot rely on centralized and organized connectivity, and can be conceived as applications of
Mobile Ad Hoc Networks. A MANET is an autonomous collection of mobile users that communicate over
relatively bandwidth constrained wireless links. Because of the mobility of the nodes, the network topology
may change rapidly and unpredictably.

1.1.2. Smart sensor networks

A wireless ad hoc sensor network consists of a number of sensors spread across a geographical area. Each
sensor has wireless communication capability and some level of intelligence for signal processing and net-
working of the data. Some examples include a group of soldier establishing communication for tactical
communication or a measurement of the air pollution.

There are two ways to classify smart sensor networks, namely whether the nodes are individually address-
able, and whether the data in the network is aggregated. The sensor nodes in a superhighway network should
be individually addressable, so that one can determine the location of the sensors. Yet the addressability of
the sensors which are used to measure the temperature and wind is not so important, because they vary only
a little in the same location.
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Both, MANETs and Sensor networks can be can be further classified into two broad types: homogeneous

and heterogeneous networks. In homogeneous networks all nodes are identical in terms of battery energy
and hardware complexity. While in a heterogeneous sensor network, two or more different types of nodes
with different battery energy and functionality are used. The motivation is that the more complex hardware
and the extra battery energy can be embedded in some nodes, thereby reducing the hardware cost of the rest
of the network.

1.2. Routing Protocols for Ad Hoc Wireless Networks

An ad-hoc wireless network consists of a set of mobile nodes that are connected by wireless links. As we
have seen, the network topology changes randomly while the nodes move on. Due to the highly dynamic
topology and lack of central management, the protocols used in a traditional network to find a path from a
source node to a destination node cannot be directly used in wireless ad-hoc networks. So a lot of routing
protocols for ad hoc networks have been developed in the recent past.

1.2.1. Requirements

Due to the issues in ad-hoc networks discussed above, a routing protocol for wireless ad hoc networks should
satisfy the following requirements:

• Fully distributed

• Adaptive to frequent topology changes

• Route computation and maintenance must involve a minimum number of nodes.

• Minimum of the number of packet collision

• Provide a certain level of quality of service (QoS)

• Use the limited resources such as bandwidth carefully

1.2.2. Classification of routing protocols

We can classify the routing protocols for ad hoc networks according to different criteria. They are routing
protocols based on the following criteria:

1. Routing information update mechanism
These protocols can be driven either by a routing table or on demand. In the first case, every node
stores the network information in a routing table, which will be updated periodically. In order to get
the path to the destination the node uses an appropriate path-finding algorithm to find the closest path.
The typical protocols of this case are DSDV [90], WRP [76], CGSR [21], STAR [38], OLSR [22],
FSR [47], HSR [47], and GSR [19].

In the second case the nodes do not need to maintain the network topology. They get the path when
they need it, by using a connection establishment process. The advantage is that nodes do not need
to exchange routing information periodically. There are also some protocols which combine both
features. The typical protocols of this case are DSR [52], AODV [91], ABR [120], SSA [32], FORP
[112], and PLBR [106].

Some protocols, such as CEDAR [103], ZRP [40], and ZHLS [51], combine both features. We called
those protocols hybrid routing protocols.

2. Use of temporal information for routing
This classification is based on the use of temporal information used for the routing process. Since
ad hoc networks are highly dynamic, it is very important to use the temporal information for routing.
According to the time of the information, we get two further classifications in this category.
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a) Routing protocols using post temporal information which use information about the past status

of the links or the status of links at the time of routing to make routing decisions. Such protocols
as DSDV [90], WRP [76], STAR [38], AODV [91], FSR [47], HSR [47], and GSR [19] are of
this class.

b) Routing protocols using future temporal information, which use information about the expected
future status of the wireless links to make routing decisions. Such protocols as FORP [112],
RABR [4], and LBR [66] are of this class.

3. Topology information organization
Since the number of nodes in ad hoc networks is generally small, it is possible to use either a flat
topology or a hierarchical topology for routing. In the first case, the availability of a globally unique
addressing mechanism for nodes in ad hoc wireless networks should be assumed. Such protocols
as DSR [52], AODV [91], ABR [120], SSA [32], FORP [112], and PLBR [106] are of this case.
Protocols of the second case make use of a logical hierarhy in the network and an associated addressing
scheme. CGSR [21], FSR [47] and HSR [47] are of this case.

4. Utilization of specific resources
The protocols of this category can be further classified into two types:

a) Power-aware routing protocols: Protocols falling into this class atempt to minimize the baterry
power. A typical protocol is PAR [102].

b) Geographical information assisted routing protocols: Protocols falling into this class atempt
to improve the performance of routing and reduce the control overhead by effictively utilizing
the geographical information. A typical protocol is LAR [59].

Several of the protocols addressed above are also described in [74].

1.3. Multicast Routing

Due to the highly dynamic topology, limited bandwidth and other limited resources of ad hoc networks, it is
a challenge to adapt existing multicast routing protocols of wired networks, or to develop new protocols for
ad hoc networks.

1.3.1. Requirements

A good multicast routing protocol for ad hoc networks should satisfy the following requirements:

• Robustness: It should be robust enough to sustain the mobility of the nodes and achieve a high packet
delivery ratio.

• Efficiency: Multicast efficiency is defined as the ratio of the number of data packets received by the
receivers and the total number of packets transmitted in the networks.

• Control overhead: In order to manage the nodes in an ad hoc network, it is necessary to exchange the
control packets. Due to the limited bandwidth in ad hoc networks, the number of the control packets
should be minimal.

• Quality of service (QoS): The main parameters for QoS are throughput, delay, delay jitter, and relia-
bility.

• Independence of the unicast routing protocol: A multicast routing protocol should be independent
of any specific unicast routing protocol.

• Resource management: A multicast routing protocol should use minimum power and memory.
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1.3.2. Classifications of multicast routing protocols

According to the dependency of the applications we can classify the multicast routing protocols broadly into
two types:

1. Application-independent/generic multicast protocols
The most multicast routing protocols are of this class. They can be further classified along the follow-
ing dimensions:

a) Based on topology
i. Tree-based: Only one path exists between a source-receiver pair. Compared to mesh-based

protocols, those tree-based are more efficient. Protocols falling into this class are MCEDAR
[104], BEMRP [89], MZRP [27], ABAM [121], DDM [50], and WBM [25].

ii. Mesh-based: There may be more than one path between a source-receiver pair, hence
protocols of this type are more stable than those tree-based. Protocols falling into this class
are AMRoute [65], MAODV [98], and AMRIS [125].

b) Based on initialization of the multicast session
i. Source-initiated: In protocols of this class, the source initializes the multicast formation.

Protocols falling into this class are MZRP [27], ABAM [121], AMRIS [125], ODMRP [63],
DCMP [24], and NSMP [62].

ii. Receiver-initiated: In protocols of this class, the receive initializes the multicast formation.
Protocols falling into this class are BEMRP [89], DDM [50], WBM [25], PLBM [105],
FGMP-RA [20], and NSMP [62].

c) Based on the topology maitenance mechanism
i. Soft state approach: Protocols falling into this class send control packets periodically to

refresh the route. Protocols of this class are MZRP [27], DDM [50], ODMRP [63], DCMP
[24], FGMP-RA [20], and NSMP [62].

ii. Hard state approach: Protocols falling into this class send control packets to refresh the
route, only when a link breaks. Protocols of this class are BEMRP [89], ABAM [121],
WBM [25], PLBM [105], AMRIS [125], and CAMP [37].

2. Application dependent multicast protocols
Protocols of this class are used for specific application for which they are designed. Only several
protocols are developed, such as RBM [15], CBM [129], and LBM [60].

Several of the protocols addressed above are also described in [75].

1.4. Security in Ad Hoc Networks

As discussed at begin of this chapter, due to the issues such as shared physical medium, lack of central
management, limited resources, no fixed and highly dynamic topology, ad hoc networks are much more
vulnerable to security attacks. Hence it is very necessary to find security solutions, which are much more
difficult to develop than in wired networks. As well as in wired networks, the following major security goals
should be satisfied. They are confidentiality, integrity, availability, authentication, non-repudiation, which
will be further described in Section 3.1.

In the following sections we first address attacks in ad hoc networks, and list several typical special
attacks. Then we describe the solutions to ensure ad hoc networks, namely, the solutions to avoid and to
minimize the loss resulted by those attacks.

1.4.1. Networks security attacks in ad hoc networks

As well as in wired Networks, we can classify the attacks into two brief categories, namely passive and
active attacks. A ,,passive attack“ attempts to learn or make use of information from the system but does
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not affect system resources. A powerful solution to keep the adversary from getting useful information is
encrypting the communication. An active attack attempts to alter system resources or affect their operation.
Active attacks can be further classified into two types according to the location of attackers, namely internal
and external active attacks.

In the following we list at first several attacks in ad hoc networks with brief descriptions, and then discuss
the solutions. According to the layer attacked they can be classified into network layer attacks, transport
layer attacks, Application layer attacks, and multi-Layer attacks.

1.4.1.1. Network layer attacks

Attacks, which could occur in network layer of the network protocol stack, fall into this class. In following
three of those are briefly described.

1. Wormhole attack: In this attack, an adversary receives packets at one point in the network, ,,tunnels“
them to another point in the network, and then replays them into the network from that point [43].
This tunnel between two adversaries are called wormhole. It can be established through a single long
range wireless link or a wired link between the two adversaries. Hence it is simple for the adversary to
make the tunneled packet arrive sooner than other packets transmitted over a normal multi-hop route.

2. Black hole attack: In this attack, a malicious node attempts to suggest false path to the destination.
An adversary could prevent the source from finding path to destination, or forward all messages
through a certain node [5].

3. Routing attacks: In this attack, an adversary attempts to disrupt the operation of the network. The
attacks can be further classified into several types, namely routing table overflow attack, routing table
poisoning attack, packet replication attack, route cache poisoning, and rushing attack.

In a routing table overflow attack, an adversary attempts to cause an overflow in routing table by
advertises routes to non-existent nodes, while in routing table poisoning attack the adversary sends
false routing updates or modifies the actual routing updates to result jam in networks.

Some other attacks in network layer, such as Byzantine attack [10], information disclosure, and resource
consumption must also be considered.

1.4.1.2. Transport layer attacks

One of the transport layer attacks is session hijacking. In this type of attack, an adversary obtains the control
of a session between two parties. In most cases the authentication process is executed when a session begins,
hence an adversary could take the role of one party in the whole session.

1.4.1.3. Application layer attacks

In this type of attack, an adversary analyzes the vulnerability. Dozens of attacks aiming at application layer
exist, such as script attack, virus, and worm.

1.4.1.4. Multi-Layer attacks

Attacks, which could occur in any layer of the network protocol stack, fall into this class. In following two
of those are briefly described.

1. Spoofing attack: Spoofing attacks are also called impersonation attack. The adversary pretends to
have the identity of another node in the network, thus receiving messages directed to the node it
fakes. One of these attacks is man-in-the-middle attack. In this attack, attackers place their own node
between two other nodes communicating with each other and forward the communication.
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2. Denial of service attack: In this type of attack, the attacker attempts to prevent the authorized users

from accessing the services. Due to the disadvantage of ad hoc networks, it is much easier to launch
Dos attacks. For example, an adversary could disrupt the on-going transmissions on the wireless
channel by employing jamming signals on the physical and MAC layers.

1.4.1.5. Others

Unlike above addressed attacks, in a device tampering attack, devices such as PDA could get stolen or
damaged easily. The adversary could then get useful data from the stolen devices and communication on
behalf of the owner.

1.4.2. Solution against attacks

Since lot of attacks exist and threat the ad hoc networks, solutions to achieve the security goals must be
discovered. Two most important issues are secure routing and cryptography. For cryptography we refer the
reader to Section 3.

1.4.2.1. Secure routing

To avoid the above addressed network layer attacks, a secure routing protocol for ad hoc networks should:

• Be able to detect the spiteful nodes in the network and to prevent them from participating in routing
process.

• Assure that a correct route could be found, if it exists.

• Guarantee the confidentiality of network topology.

• Be stable against attacks

Some security-aware routing protocols for ad hoc networks have been proposed, such as Security-Aware
Ad Hoc Routing Protocol (SAR) [127], Secure Efficient Ad Hoc Distance Vector Routing Protocol (SEAD)
[42], and Authenticated Routing for Ad Hoc Networks (ARAN) [100].
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2. Mathematical Backgrounds

This chapter discusses a set of mathematical backgrounds required for this thesis. Section 2.1 lists the most
notations and definitions that are used. While some mathematical foundations such probability, information,
complexity, number, and group theory, are studied in Section 2.2. After that we describe some foundations
over elliptic curve in Section 2.3, the problems are discussed in Section 2.4.

2.1. Notations and Definitions
1.

∑
denotes the sum of all related elements, e.g.

∑n
i=1 ai means the sum a1 + a2 + · · · + an, and∑

ai∈S ai means the sum of all elements belonging to set S.

2. log denotes the logarithm of base 2, ln denotes the logarithm of base e.

3. x := expr means that x is defined as expr. For example m(n) := m(m− 1)(m− 2) · · · (m−n+1).

4. {v1, v2, · · · , vn} denotes the set of elements v1, v2, · · · , vn.

5. (v1, v2, · · · , vn) denotes the sequence of elements v1, v2, · · · , vn.

6. {f(v1, v2, · · · , vn) | pred(v1, v2, · · · , vn)} denotes the set of the result of function f of n variables
v1, v2, · · · , vn, if they satisfy the predicate pred. For example, {(p, q, n)|p, q ∈ N, p, q are prime }
denotes the set of all tuples which contain two prime integers and their product.

7. (f(v1, v2, · · · , vn) | pred(v1, v2, · · · , vn)) denotes the sequence of the result of function f of n vari-
ables v1, v2, · · · , vn, if they satisfy the predicate pred. For example, ((p, q, n)|p, q ∈ N, p, q are
prime) denotes the infinite sequence of all tuples which contain two prime integers and their product.

8. Z denotes the set of integers; that is, the set {· · · , -2, -1, 0, 1, 2, · · · }.
9. N denotes the set of natural numbers; that is, the set {1, 2, 3, · · · }.

10. N0 denotes the set of natural numbers and 0; that is, the set {0, 1, 2, · · · }.

11. Q denotes the set of rational numbers; that is, the set {a
b |a, b ∈ Z, b 6= 0}. For example 5

7 , 111
997 are

members of Q
12. R denotes the set of real numbers.

13. a ∈ S means that element a is a member of the set S.

14. A ⊆ B means that set A is a subset of set B.

15. A ⊂ B means that set A is a proper subset of set B, that is, A ⊆ B, and A 6= B. For example,
N ⊂ N0 ⊂ Z ⊂ Q ⊂ R.

16. |A| denotes the order of A, namely the number of elements in set A.

17. A ∪B denotes the union of two sets; that is {x|x ∈ A or x ∈ B}.
18. A ∩B denotes the intersection of two sets; that is {x|x ∈ A and x ∈ B}.
19. A \B denotes the difference of two sets; that is {x|x ∈ A and x /∈ B}.

20. r
R← S or r ∈R S means that r is chosen uniformly from set S.

21. poly(v) denotes the class of univariate polynomials with variable v and non-negative coefficients; that
is ploy(v) := {

∑n
i=0 aiv

i|ai, n ∈ N0}.
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22. ε(k) denotes a negligible function of parameter k. If ε(k) <∞ 1/poly(k) := ε(k) < 1/kn,∀n >

0,∃k0,∀k > k0, we say it is negligible, else not negligible.

23. A non-negligible function f(k) of parameter k is non-negligible, if f(k) ≥∞ 1/poly(k) := f(k) ≥
1/kn,∃n > 0,∃k0,∀k > k0. Else it is not non-negligible.

24. gcd denotes the greatest common divisor. Given two integers a and b, if and only if

a) d ≥ 0, and

b) d|a and d|b, and

c) ∀c : c|a and c|b, follows c|d,

then d is the greatest common divisor of a and b, denoted d = gcd(a, b).

25. lcm least common multiple. Given two integers a and b, if and only if

a) d ≥ 0, and

b) a|d and b|d, and

c) ∀c : a|c and b|c, follows d|c,

then d is the least common multiple of a and b, denoted d = lcm(a, b).

26. prime/composite: Two integers a and b are relatively prime if the gcd(a, b) = 1. For integer p ≥ 2,
p is said to be prime if it has only two positive divisors 1 and itself p, otherwise it is composite.

27. φ(n) denotes Euler phi function of n, it is the number of integers in the interval [1, n] which are
relatively prime to positive integer n. It has the following properties:

a) if n is prime, then φ(n) = p− 1;

b) if gcd(m, n) = 1, then φ(mn) = φ(m)φ(n);

c) Given an integer n ≥ 2, it has a factorization as a product of prime powers.

n = pe1
1 pe2

2 · · · p
el
l (2.1)

where pi are pairwise distinct primes, and ei are non-negative integers, then

φ(n) = n(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pl

) (2.2)

28. a ≡ b mod n means that a is congruent to b modulo n, where n ∈ N, and n|(a− b).

29. Zn is the set of integers in interval [0, n−1]. Addition, subtraction, multiplication in Zn are performed
modulo n.

30. a−1 mod n denotes the multiplicative inverse of a in Zn. x = a−1 mod n if ax ≡ 1 mod n. It
means that a is invertible if and only if gcd(a, n) = 1.

31. Z∗
n denotes the multiplicative group of Zn. It is defined as Z∗

n := {a ∈ Zn| gcd(a, n) = 1}. If n is
prime, Z∗

n contains all elements of Zn except 0. More formally, Z∗
n = {a|1 ≤ a < n, n prime}.

For n ≥ 2, if a ∈ Z∗
n, then aφ(n) ≡ 1 mod n; and if r ≡ s mod φ(n), then ar ≡ as mod n. For

Z∗
p, where p is a prime, we derive the following properties:

a) If a ∈ Z∗
p, then ap−1 ≡ 1 mod p, and ap ≡ a mod p.

b) If r ≡ s mod p− 1, then ar ≡ as mod p for all integers a.

32. Qn/Qn: Qn denotes the quadratic residue modulo n. It is defined as Qn := {a|a = x2 mod n, x ∈
Z∗

n}. While Qn denotes the quadratic non-residue modulo n. It is defined as Qn := Z∗
n −Qn.

33.
(

a
n

)
denotes the Jacobi symbol, where n is an integer greater than 2.
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a) n is prime, p is used here for n.

(
a

p

)
=


0, p|a
1, a ∈ Qp

−1, a ∈ Qp

(2.3)

b) n is odd with prime factorization of Equation 2.1, then the Jacobi symbol is defined as(a

n

)
=

(
a

p1

)e1
(

a

p2

)e2

· · ·
(

a

pl

)el

, (2.4)

where pi are pairwise distinct primes and ei are positive integers.

34. B-smooth: Let B be a positive integer. An integer n is said to be B-smooth, or smooth with respect to
bound B, if all its prime factors are ≤ B.

35. Lq[α, c] is defined as

Lq[α, c] = O(exp((c +O(1))(ln q)α(ln ln q)1−α)), (2.5)

where c is a positive constant, and α is a constant satisfying 0 < α < 1.

36. A ≤P B means that A polytime reduces to B, where A, B are two computational problems.

37. A ≡P B means that A and B are computationally equivalent, if A ≤P B and A ≥P B, where A and
B are two computational problems.

2.2. Abstract Algebra

This section introduces algebraic groups and fields. The rest of this section gives an overview of the basic
properties and arithmetics of polynomials in finite fields.

2.2.1. Groups

A group is a tuple (G, ∗), where G is a set and ∗ is a binary operation on set G, and fulfills the following
three axioms:

1. ∗ is associative, which means that (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀ a, b, c ∈ G.

2. An identity element 1 ∈ G must exist, which satisfies a ∗ 1 = 1 ∗ a = a, ∀ a ∈ G.

3. ∀ a ∈ G,∃a−1 ∈ G, so that a ∗ a−1 = a−1 ∗ a = 1. We call this a−1 inverse.

Further if a ∗ b = b ∗ a for all a, b ∈ G, the group G is abelian or commutative.
For example, (Zn,+), where + is addition modulo n. The identity element is zero, and for each a ∈ G,

the inverse a−1 is n−a. But (Zn,×), where× is multiplication modulo n, is not a group, since the element
zero has no inverse. However, the multiplicative group of Zn, namely Z∗

n, with the operation modulo n is a
group of order φ(n), with the identity element 1.

In the following we list some important definitions and properties relevant to groups.

1. Finite: If |G| is finite, then group (G, ∗) is finite. The order of the group is the number of elements in
set G, namely |G|.

2. Subgroup: If H ⊆ G, H 6= ∅, and (H, ∗) is a group, then group (H, ∗) is called subgroup of
group(G, ∗). If H 6= G, then it is a proper subgroup.
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3. Cyclic: A group (G, ∗) is cyclic if there is an element α ∈ G such that for each β ∈ G there is an

integer i with β = αi. Such an element is called a generator of G.

g ∈ Z∗
n is a generator if ord(g) = φ(n). A generator in Z∗

n exists, if and only if n = 2, 4, pk or 2pk,
where p is a prime and k ≥ 1. For k = 1 we know that Z∗

p has a generator. g ∈ Z∗
n is a generator of

Z∗
n if and only if gφ(n)/pi 6≡ 1 mod n for all prime divisors pi of n.

4. Order: For group (G, ∗), let a ∈ G. The order of a, denoted ord(a), is defined to be the least positive
integer t such that at = 1, if such t exists, otherwise we say that the order is∞.

5. 〈a〉: If G is a group and a ∈ G, then the set of all powers of a forms, a cyclic subgroup of (G, ∗),
denoted by 〈a〉.

6. Lanrane’s theorem: If (H, ∗) is a subgroup of a finite group (G, ∗), then |H| divides |G|.

2.2.2. Rings

A ring is a tuple (R,+,×), where R is a set, + is the addition, × is the multiplication on R, and satisfies the
following four axioms:

1. (R,+) is an abelian group and its identity element is 0.

2. × is associative, that means that (a× b)× c = a× (b× c), ∀a, b, c ∈ R.

3. A multiplicative identity denoted 1 exists, which satisfies 1 6= 0, and 1× a = a× 1 = a, ∀ a ∈ R.

4. × is distributive over +, which means, a×(b+c) = (a×b)+(a×c), and (a+b)×c = (a×c)+(b×c).

The ring is communicative if a× b = b× a.
For example, Z under the usual addition and mulplication, and Zn under the addition and multiplication

modulo n are commutative rings.

2.2.3. Fields

A field is a commutative ring in which all non-zero elements have multiplicative inverses. Since in Zp,
where p is a prime integer, each element except 0 has a multiplicative inverse, and (Zp,+,×) is a commu-
tative ring, it is a field. An analogous definition of fields to order of groups and rings is the characteristic.
If there exists a positive integer t such that

∑t
i=1 1 = 0, then the least t is said to be the characteristic of

a field, otherwise we say the characteristic is 0. The characteristic of the above mentioned ring is p.
An example of field is the set of integers Zn under the addition and multiplication modulo n.

2.2.4. Finite fields

A finite field is a field (F,+,×) that contains a finite number of elements. Its order is defined to be the
number of the elements of field (F,+,×). Finite fields should satisfy the following requirements:

1. A finite field (F,+,×) contains pm elements for some prime integer p and positive integer m.

2. A unique (up to isomorphism) finite field of order s = pm exists for every pm, where p is prime and
m is positive integer. This field is denoted Fpm or GF (pm).

3. For a finite field (Fq,+×), where q = pm and p prime, its characteristic is p. Furthermore,
(Fq,+,×) contains a copy of (Fp,+,×) as the subfield.

4. Multiplicative group of Fq, denoted F∗
q , is a group of all non-zero elements from Fq under the multi-

plication. F∗
q is cyclic with the order q − 1.

5. Let (Fq,+,×) be a finite field of order q = pn, and (Fs,+,×) of order pm be its subfield, then m|n
and m > 0. Adversely if the above condition of m and n are fulfilled, there exists a unique subfield
of (Fq,+,×) of order pm.
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2.2.5. Polynomial rings

Before we specify polynomial rings, we define a polynomial. A polynomial of x over a commutative ring
(R,+,×) is:

f(x) = anxn + · · ·+ a2x
2 + a1x + a0, ai ∈ R and n ≥ 0. (2.6)

ai is called coefficient of xi. The largest positive integer m such that am 6= 0 is the degree of the polynomial
(denoted degr(f(x))), and am is called the leading coefficient. If am = 1, we say that the polynomial is
monic. If all coefficients ai with i ≥ 1 are zero, the polynomial is constant.

If R is a commutative ring, then the polynomial ring is the ring formed by the set of all polynomials in
the indeterminate x having coefficients from R, denoted by R[x].

A polynomial ring is a ring which is defined over a polynomial. It is a tuple (R[x],+,×), where the two
operations + and× are the standard polynomial addition and multiplication with coefficient arithmetic in R.
All other issues are the same as in the definition of ring.

The following example of polynomial ring (Z3,+,×) has identity element f(x) = 0, and multiplicative
identity element f(x) = 1. Let g(x) = x5 + 2x + 1, and h(x) = x3 + 2x2 + x, then

g(x) + h(x) = x5 + x3 + 2x2 + 3x + 1
= x5 + x3 + 2x2 + 1

g(x)× h(x) = x8 + 2x7 + x6 + 2x4 + 5x3 + 4x2 + x
= x8 + 2x7 + x6 + 2x4 + 2x3 + x2 + x

Let f(x) with positive degree be from F [x], if it cannot be expressed as the product of two polynomials with
positive degree from F [x], then f(x) is called irreducible over F [x].

What is the operation division for polynomials? Let g(x), h(x) ∈ F [x], with h(x) 6= 0, then the division
of polynomial g(x) by h(x) can be written in form

g(x) = q(x)h(x) + r(x), q(x), r(x) ∈ F [x], degr(r(x)) < degr(h(x)) (2.7)

We call q(x) quotient and r(x) remainder. Furthermore we can write

g(x) div h(x) = q(x) (2.8)

g(x) mod h(x) = r(x). (2.9)

We take two polynomials from Z2[x], g(x) = x5 + x + 1, and h(x) = x3 + x + 1. The division of g(x) by
h(x) provides

g(x) = (x2 + 1)h(x) + x2.

So we get g(x) div h(x) = x2 + 1, and g(x) mod h(x) = x2.
A few important properties and definitions are listed below.
1. Let g(x), h(x) ∈ F [x], if g(x) mod h(x) = 0, we say that h(x) divides g(x), denoted h(x)|g(x).

2. Let g(x), h(x), f(x) ∈ F [x], if f(x)|(g(x) − h(x)), we say that g(x) is congruent to h(x) modulo
f(x), denoted g(x) ≡ h(x) mod f(x).

3. Let f(x) ∈ F [x], F [x]/f(x) denote the set of all polynomials with degree less than that of f(x). The
operation are performed modulo f(x). In fact, F [x]/f(x) is a commutative polynomial ring. And if
f(x) is irreducible, then F [x]/f(x) is a field.

4. Let g(x), h(x) ∈ Zp[x], where p is prime, and not both polynomials are 0. gcd(g(x), h(x)) denotes
the greatest common divisor of g(x) and h(x). It is the monic polynomial of greatest degree in Zp[x].
By definition, gcd(0, 0) = 0.

For given g(x), h(x) ∈ Zp[x], the Euclidean algorithm for Zp[x] (algorithm 2.218 in [70]) can be
used to compute gcd(g(x), h(x)), with a running time of O(m2) Zp − operations or O(m2(lgp)2)
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bit-operations, where m is the greater degree of g(x) and h(x) . The extended Euclidean algorithm
for Zp[x] (algorithm 2.221 in [70]) yields s(x) and t(x) ∈ Zp[x], besides the greatest common divisor,
such that

s(x)g(x) + t(x)h(x) = gcd(g(x), h(x)). (2.10)

Although it provides more result, it has the same runtime as Euclidean algorithm.
5. If f(x) ∈ Zp[x] is not zero, then it can be expressed to be

f(x) = af1(x)e1f2(x)e2 · · · fl(x)el , ei ∈ N, a ∈ Zp (2.11)

and fi are distinct monic irreducible polynomials in Zp[x].

2.2.6. Arithmetic of Fpm

We describe in the following in the arithmetic of a finite field Fpm , where p is prime. If m = 1, then Fpm

is just Zp and the arithmetic is performed modulo p. For each m ≥ 1, there exists a monic irreducible
polynomial of degree m over Zp, every finite field has a polynomial basis representation. Some efficient
algorithms to find irreducible polynomials over finite fields are introduced in section 4.5.1 of [70]. Hence
the elements of the finite field Fpm can be represented by polynomials in Zp[x] of degree < m.

Fpm = {am−1x
m−1 + am−2x

m−2 + · · ·+ a1x + a0 | ai ∈ Zp} (2.12)

For convenience, the polynomial am−1x
m−1 + am−2x

m−2 + · · · + a1x
1 + a0 is represented by the vector

(am−1am−2 · · · a1a0) of length m. Hence

Fpm = {(am−1am−2 · · · a1a0) | ai ∈ Zp} (2.13)

Now let f(x) be an irreducible polynomial from Zp[x] with degree m, and let g(x), h(x) be polynomials
from Fpm with degree less than m, then

1. The addition g(x) + h(x) is a usual addition of polynomials in Zp[x].
2. The product g(x)h(x) can be computed as follows, first we multiply g(x) and h(x) as polynomial by

the usual method, and then compute polynomial modulo f(x).
3. The multiplicative inverses can be computed by the extended Euclidean algorithm for Zp[x]. To

compute the multiplicative inverse of g(x), namely g−1(x), we get first s(x)g(x) + t(x)f(x) =
gcd(g(x), f(x)). Since f(x) is irreducible, gcd(g(x), f(x)) = 1. Now we get g−1(x) = s(x).

An example of F24 is shown in following. Given an irreducible polynomial f(x) = x4 + x + 1 ∈ Z2[x].
Hence F24 is the set of polynomials over F2 of degree less than 4. F24 = {a3x

3 + a2x
2 + a1x + a0 | ai ∈

{0, 1}} or {(a3a2a1a0) | ai ∈ {0, 1}}.
1. Addition: (1101) + (1011) = (0110).
2. Multiplication: (1101)(1011) = (x3 + x2 + 1)(x3 + x + 1)

= x6 + x5 + x4 + x3 + x2 + x + 1 ≡ x2 + x mod f(x).
3. Multiplicative inverse: The inverse of (0101) is (1011). This can be verified by: (x2 + 1)(x3 +

x + 1) = x5 + x2 + x + 1 ≡ 1 mod f(x).

2.3. Elliptic Curve Groups

Elliptic curves have been studied extensively for the past 150 years, and Elliptic curve systems as applied
to cryptography were first proposed in 1985 independently by Neal Koblitz [61] and Victor Miller [71]. A
background understanding of abstract algebra is required, much of which can be found in Section 2.2.

This section is organized as follows: Section 2.3.1 explains elliptic curves over real numbers in order
to illustrate the geometrical properties of elliptic curve groups, while sections 2.3.2 and 2.3.3 discuss the
elliptic curves groups over the underlying fields of Fp and F2m .
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2.3.1. Elliptic curve groups over R

An elliptic curve over R may be defined to be as the set of all points (x, y) which fulfill an elliptic curve
equation of the form:

y2 = x3 + ax + b, x, y, a, b ∈ R. (2.14)

If 4a3 + 27b2 6= 0, then the elliptic curve of form 2.14 can be used to form a group. An elliptic curve
group over real numbers consists of the points on the corresponding elliptic curve, together with the point
at infinity, denoted O (definition in Equation 2.18). All points except O can be denoted (x, y), where x, y
satisfy the Equation 2.14. The negative of a point P (xP , yP ) is defined to be its reflection in the x-axis:
−P = (xP ,−yP ). It is to verify, if P is on the curve, then -P must be on the curve. An example of the
graph of elliptic curve y2 = x3 − 4x + 0.67 (here 4a3 + 27b2 = 4 · (−4)3 + 27 · 0.672 6= 0) is shown in
Figure 2.1.

y

x

y2 = x3 − 4x + 0.67

Figure 2.1.: Elliptic curve y2 = x3 − 4x + 0.67

In the following we discuss the addition of two distinct points, doubling of one point on an elliptic curve.
Since the operation can be performed when the points are on the same elliptic curve, for convenience, we
omit in the following this condition.

2.3.1.1. Adding two distinct points

The addition of two distinct points P (xP , yP ) and Q(xQ , yQ) can be further classified into two types.

1. -P 6= Q: To add P and Q, a line is drawn through both points. This line will intersect the elliptic curve
in exactly one more point, denoted -R. The point -R is reflected in the x-axis to the point R. The
point R is the addition of P and Q, namely R = P + Q.

Figure 2.2 gives an example of addition over elliptic curve y2 = x3+7x. Given two points P (−2.35,−1.86)
and Q(−0.1, 0.836), according to the above described method, we get R(3.89,−5.62) = P + Q.

Beside the above introduced geometric method, the following rules can be applied to compute the
addition of two distinct points: R(xR , yR) = P (xP , yP ) + Q(xQ , yQ), where −P 6= Q.

s =
yP − yQ

xP − xQ

(2.15)

xR = s2 − xP − xQ (2.16)

yR = −yP + s(xP − xR) (2.17)
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y

x

y2 = x3 − 7x

P (−2.35,−1.86)

Q(−0.1, 0.836)

−R(3.89, 5.62)

R(3.89,−5.62)

Figure 2.2.: Adding two distinct points P and Q with −P 6= Q on elliptic curve y2 = x3 − 7x

2. -P = Q: In this case, the line through P and Q is a vertical line, it does not intersect the elliptic curve
at a third point. The point at infinity O is defined to be the result of addition of P and −P .

O = P + (−P ) (2.18)

P + O = P can be derived from Equation 2.18. Hence O is the additive identity of the elliptic curve
group. Figure 2.3 illustrates the addition of two points P and −P on elliptic curve x3 + 6x + 6.

Figure 2.3.: Adding two distinct points P and Q with −P = Q on elliptic curve y2 = x3 − 6x + 6

2.3.1.2. Doubling a point

The doubling of a point P (xP , yP ) can be further classified into two types.

1. −yP 6= 0: A tangent line to the curve is drawn at the point P . Since yP 6= 0, this line intersects the
elliptic curve at exactly one other point −R. −R is reflected in the x-axis to R, which is defined to be
the doubling of P : R = P + P = 2P . An example of doubling the point P (2, 2.65) on elliptic curve
y2 = x3 − 3x + 5 is shown in Figure 2.4.
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Figure 2.4.: Doubling the point P with yP 6= 0 on elliptic curve y2 = x3 − 3x + 5

Beside the above introduced geometric method, the following rules can be applied to compute the
doubling of a point P : R(xR , yR) = 2P (xP , yP ), where yP 6= 0.

s =
3x2

P
+ a

2yP

(2.19)

xR = s2 − 2xP (2.20)

yR = −yP + s(xP − xR) (2.21)

2. −yP = 0: A tangent line is drawn as in the first case. Since yP = 0, this line intersect does not intersect
the elliptic curve at any other point. According to the definition of O in Equation 2.18 and the fact P
= −P , we get 2P = P + (−P ) = O.

2.3.2. Elliptic curve groups over Fp

Because of round-off errors, computations over the real numbers are slow and imprecise, whereas crypto-
graphic applications require fast and precise arithmetic. Hence elliptic curve groups over the finite fields
such as Fp and F2m are used in practice, instead of over R.

An elliptic curve over Fp may be defined to be as a set of all points (x, y) which fulfill an elliptic curve
equation of the form:

y2 = x3 + ax + b, x, y, a, b ∈ ZP , p prime. (2.22)

If 4a3 + 27b2 mod p 6= 0, the elliptic curve group over Fp is defined to be set of all points which satisfy
Equation 2.22 and the point at infinity O. Every point can be negated. Given a point P (xP , yP ) on the
elliptic curve 2.22, the negative point of P is defined as follow:

−P = (xP , −yP mod p) (2.23)

There are several major differences between elliptic curve groups over Fp and over R. Elliptic curve
groups over Fp have a finite number of points, which is a desirable property for cryptographic purposes.
Thus the geometry used in elliptic curve groups over R cannot be used for elliptic curve groups over Fp.
However, the algebraic rules for the arithmetic can be adapted for elliptic curves over Fp.

The addition of two distinct points P (xP , yP ) and Q(xQ , yQ) with −P = Q, and the doubling of point
P (xP , 0), result the point at infinity O. The algebraic rules for other cases are given below.
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1. Addition of two distinct points P (xP , yP ) and Q(xQ , yQ), where −P 6= Q. R(xR , yR) = P + Q.

s =
yP − yQ

xP − xQ

mod p (2.24)

xR = s2 − xP − xQ mod p (2.25)

yR = −yP + s(xP − xR) mod p (2.26)

2. Doubling of point P (xP , yP ) with yP 6= 0. R(xR , yR) = 2P .

s =
3x2

P
+ a

2yP

mod p (2.27)

xR = s2 − 2xP mod p (2.28)

yR = −yP + s(xP − xR) mod p (2.29)

2.3.3. Elliptic curve groups over F2m

Elements of the field F2m are m-bit strings. The rules for arithmetic in F2m can be defined by either
polynomial representation or by optimal normal basis representation. Since F2m operates on bit strings,
computers can perform arithmetic in this field very efficiently.

An elliptic curve with the underlying field F2m is formed by choosing the elements a and b within F2m

(the only condition is that b is not 0). As a result of the field F2m having a characteristic 2, the elliptic curve
equation is slightly adjusted for binary representation

y2 + xy = x3 + ax2 + b, where a, b, x, y ∈ F2m (2.30)

The elliptic curve includes all points (x, y) which satisfy Equation 2.30. It could be used to form an elliptic
curve group over F2m , which consists of the points on the corresponding elliptic curve, together with the
point at infinity O.

There are finitely many points on such an elliptic curve, thus there are no round off errors, the same as
in elliptic curves groups over Fp. Since the elliptic curve equation is slightly different from Equations 2.14
and 2.22, the rules here applied are slightly different.

Every point can be negated. Given a point P (xP , yP ) on the elliptic curve 2.30, the negative point of P
is defined as follows:

−P = (xP , xP + yP ) (2.31)

where + is addition in F2m . As with elliptic curves over R and Fp, for the point P , P + (−P ) = O, and if
yP = 0, 2P = O. The rules for other cases are listed below.

1. Addition of two distinct points P (xP , yP ) and Q(xQ , yQ), where −P 6= Q. R(xR , yR) = P + Q.

s =
(yP − yQ)
(xP + xQ)

(2.32)

xR = s2 + s + xP + xQ + a (2.33)

yR = s(xP + xR) + xR + yP (2.34)

2. Doubling of point P (xP , yP ) with yP 6= 0. R(xR , yR) = 2P .

s = xP +
yP

xP

(2.35)

xR = s2 + s + a (2.36)

yR = x2
P

+ (s + 1)xR (2.37)
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2.3.4. Computational Cost

We have discussed the operations addition and doubling in elliptic curves. Now the computational costs of
both operations under affine coordinate and projective coordinate are summarized in Tables 2.1 and 2.2.

Affine coordinate Projective coordinate
Operation Inverse Multiplication Multiplication
Addition 1 3 16
Doubling (arbitrary a) 1 4 10
Doubling (a = −3) 1 4 8

Table 2.1.: Computational cost of addition and doubling over Fp

Affine coordinate Projective coordinate
Operation Inverse Multiplication Square Multiplication Square
Addition (a 6= 0) 1 2 1 15 5
Addition (a = 0) 1 2 1 14 4
Doubling 1 2 1 5 5

Table 2.2.: Computational cost of addition and doubling over F2m

2.4. Number-Theoretic Reference Problems

If it is difficult or impossible for an adversary to attack a cryptosystem successfully, then we say that the
cryptosystem is secure. But what means here difficult or impossible? To answer those questions we need
the classification of security (in Section 2.4.2), while the last sections address some specific computational
problems. To understand these above, some definitions of probability, and P and P problem are described
briefly in Section 2.4.1.

2.4.1. Probability, P and NP problem

This section gives first some definitions of probability. After that the Turing machine will be briefly de-
scribed. It will be used to define the P and NP problems, which are discussed in the following.

2.4.1.1. Probability

1. Experiment: An experiment is a procedure that returns possible results. We call the separate possible
results simple events, and the set of all possible results sample space. Since discrete sample spaces
are sample spaces with only finitely many possible outcomes, we can label all the simple events with
s1, s2, · · · , sn, where n is the number of all events. In the following parts if we does not note, we
consider only the probability related to discrete sample spaces.

2. Probability distribution: A probability distribution P on S is a sequence of numbers p1, p2, · · · , pn,
where pi represents the probability of si. They are all non-negative and should fulfill

n∑
i=1

pi = 1 (2.38)
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3. Event: An event E is a subset of the sample space S. We denote the probability, which event E

occurs, with P (E).

P (E) =
∑
i∈E

P ({si}) (2.39)

where P ({si}) is the probability of event si, it can also be simply denoted as P (si).

4. Complementary event: A complementary of E is defined as the subset of all simple events in sample
space S, which do not belong to E. It is denoted as E. E ∪ E = S, E ∩ E = ∅.

5. Conditional probability: Let E1 and E2 be two events with P (E2) > 0. We call the probability of
event E1 occurring, given that E2 has occurred, the conditional probability of E1 given E2, denoted
P (E1|E2), is:

P (E1|E2) =
P (E1 ∩ E2)

P (E2)
(2.40)

According to Bayes’ theorem, it can be computed as follows:

P (E1|E2) =
P (E1)P (E2|E1)

P (E2)
(2.41)

2.4.1.2. Turing machine

The Turing machine is an abstract machine introduced in 1936 by Alan Turing to give a mathematically
precise definition of algorithm or ,,mechanical procedure“. As such it is still widely used in theoretical
computer science, especially in complexity theory and the theory of computation. A Turing machine consists
of a tape, a head, a state register, and an action table.

According to the number of used tapes Turing machine is classified into two classes, namely one-tape and
k-tape Turing machine. We define now formally Turing machine. A Turing machine is a 7-tuple

M = (Q,Γ,
∑

, s, b, F, δ),

where

• Q is a finite set of states

• Γ is a finite set of the tape alphabet

•
∑

is a finite set of the input alphabet (Σ ⊆ Γ)

• s ∈ Q is the initial state

• b is the blank symbol (b ∈ Γ \ Σ)

• F ⊆ Q is the set of final or accepting states

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function for one-tape Turing machine, while

δ : Q× Γk → Q× (Γ× {L,R, S})k

is for k-tape Turing machine, where L is left shift, R is right shift, and S is no shift.

A Turing machine is deterministic if the action table has at most one entry for each combination of symbol
and state. If it contains multiple entries the machines is non-deterministic.
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2.4.1.3. Class P and NP

The complexity class P is the set of all decision problems that are solvable in polynomial time. More
precisely it is defined in [39] as follows.

A language L is recognizable in (deterministic) polynomial time if there exists a deterministic Turing
machine M and a polynomial p(·) such that

• on input a string x, machine M stops after at most p(|x|) steps, and

• M(x) = 1 if and only if x ∈ L.

The complexity class NP is the set of all decision problems for which a YES answer can be verified in
polynomial time given some extra information. More precisely it is defined in [39] as follows.

A language L is in P if there exists a Boolean relation RL ⊆ {0, 1}∗ × {0, 1}∗ and a polynomial p(·)
such that RL can be recognized in (deterministic) polynomial time, and x ∈ L if and only if there exists a y
such that |y| ≤ p(|x|) and (x, y) ∈ L. Such a y is called a witness for membership of x ∈ L.

2.4.2. Computational security

Security can be generally classified into two types.

1. Information-theoretic or unconditional security: The security is independent of the time and space
resources of the adversary.

Given a cryptosystem (P, C,K, Enc, Dec), where P is the set of all plaintexts, C is the set of
ciphertexts,K is the set of all keys, Enc is encryption algorithm, and Dec is the decryption algorithm.
We define further E to be the event, that c is the ciphertext of a given plaintext p encrypted with a key
k.

E := {(c, p, k)|Enck(p) = c, p ∈ P, k ∈ K, c ∈ C} (2.42)

The cryptosystem is perfect secure, if

P (p|E) = P (p), ∀p ∈ P,∀c ∈ C (2.43)

That is, the probability of plaintext is independent of the ciphertext. One time pad falls in this type.
But it requires that the key is longer than the plaintext. The most symmetric key cryptosystems and all
public-key cryptosystems do not fulfill this condition, hence they are not information-theoretic secure.

2. Computational or cryptographic security: This security usually relies on either bounds of the at-
tacker’s resources, i.e., it is secure only against all attackers which do not have more than these
resources, or on some number-theoretic reference problems, which are discussed in the remaining
sections.

In a cryptographic setting, an adversary is usually assumed to be very powerful. Hence if a computational
problem can be solved in polynomial time, at least for a non-negligible fraction of all possible inputs, then
we say this problem is tractable. As a result all algorithms based on that problem are said to be insecure or
not computationally secure.

The most known and studied problems are the integer factorization, RSA, quadratic residuosity, square
root, discrete logarithm, generalized discrete logarithm, Diffie-Hellman, generalized Diffie-Hellman, and
subset sum problems. Some problems can be further classified into types Computational and Decisional.
Since their true computational complexities are unknown up to the present, they are treated to be intractable,
although nobody can prove this.

In the following a few concrete problems will be introduced.
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2.4.3. The integer factorization problem

According to Equation 2.1, an integer n greater than 1 can be formed with n = pe1
1 pe2

2 · · · p
el
l . The integer

factorization problem(FACTORING) is defined to find the prime factorization for a given n.
Some factoring algorithms in literature are studied to perform the factoring better. The details of algo-

rithms can be found on pages 90-98 of [70]. To give an overview their complexity is listed in Table 2.3.

Algorithm Complexity Remark
trail division O(p2 + log n) p2 is second largest prime

(§ 3.2.1 in [70]) factor of n

Pollard’s rho factoring O(
√

n) O(
√

n) memory
(§ 3.2.2 in [70])

Pollard’s p− 1 factoring O(B lnn/ lnB) p− 1 is B-smooth
(§ 3.2.3 in [70])

quadratic sieve factoring Ln[12 , 1]
(§ 3.2.6 in [70])

general number field
sieve factoring

Ln[13 , c] c = (64/9)1/3 ≈ 1.92

(§ 3.2.7 in [70])

Table 2.3.: Complexity of factoring algorithms of n

2.4.4. The RSA problem

Given n > 0 which is a product of two distinct primes, c, e ∈ Zn \ {0} and gcd{e, φ(n)} = 1, find
m ∈ Zn \ {0} such that me ≡ c mod n. Namely, the RSA problem solves the e-th roots modulo n.

The RSA problem polytime reduces to the integer factorization problem, denoted RSAP ≤P FACTOR-
ING. In other words, if the factorization of n is unknown, then there is no efficient procedure known for
solving the RSA problem.

2.4.5. The square root problem

Let Jn be the set of all elements of Z∗
n with Jacobi symbol 1, Jn := {a|

(
a
n

)
= 1, a ∈ Z∗

n}. Since the set of
quadratic residues modulo n is subset of Jn, all elements in Jn but not in Qn are said to be pseudosquares
modulo n: Q̃n = Jn −Qn.

The square root problem is shown below: given an positive odd integer n and a ∈ Jn, decide whether or
not a is a quadratic residue modulo n.

If n is a product of two distinct primes, then Qn and Q̃n have the same order. Thus one get a correct guess
with the probability 1

2 . But if n is prime, then is is easy to get the correct guess. In fact the square root
problem polytime reduces to the FACTORING problem, denoted SQROOT ≤P FACTORING.

2.4.6. The square root modulo n problem

This problem is shown in the following: let n be a composite integer and a ∈ Qn, find a square root x of
a mod n, namely x2 ≡ a mod n. We discuss in the following only the case that n is a product of two
distinct primes, i.e. n = pq.

In fact the FACTORING problem and the SQROOT problem are computationally equivalent, denoted
FACTORING ≡P SQROOT. This assumption can be verified. Assumed that a polytime algorithm A can
solve SQROOT problem, it does the following to solve the FACTORING problem.
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1. choose x
R← Z∗

n such that gcd(x, n) = 1,

2. compute a = x2 mod n,

3. compute y such that a = y2 mod n,

4. if y ≡ ±x mod n, repeat from step 1, otherwise gcd(x − y, n) is a non-trivial factor of n, namely
p or q. Since a has four square roots modulo n (±x and ±z with ±x 6≡ z mod n), the success
probability is 1

2 .

Reversely if there exists a polytime algorithm B that can solve FACTORING problem, it is possible to get
the prime factors of n. If the prime factors are known, some algorithms known can be used to compute the
square root with running time of O((log p)3) bit operations.

The above discussed fact can be generalized to all the cases where n is an arbitrary composite integer.
Why n is restricted to the composite n? In the following we will show that it is easy to compute the square
root modulo n for a prime n.

If n is prime (p is used in this case for n), then it is easy to find the correct square root of a given integer.
In this case there are a few of algorithms to solve this problem. If p ≡ 3 mod 4, p ≡ 5 mod 8, or
p − 1 = 2st, some algorithms (algorithms 3.36, 3.37, 3.39 in [70]) need only O((log p)3) bit operations
to compute the square root modulo p. Otherwise computing the square root of p needs in worst case the
running time of O((log p)4) bit operations fact 3.35 in [70].

2.4.7. The discrete logarithm problems

The security of many cryptographic techniques depends on the intractability of the discrete logarithm prob-
lem. For example the Diffie-Hellman key agreement and its derivatives, ElGamal encryption, ElGamal
signature scheme and its variants, DSA signature scheme.

Discrete logarithm is defined as follows: given a finite cyclic group G of order n, a generator g of G, and
an element β ∈ G, find an integer x ∈ Zn such that β = gx. x is called the discrete logarithm of β to the
base g, denoted logg β.

The problem relevant to discrete logarithm can be further classified into two types.
1. The discrete logarithm problem (DLP): given a prime p, a generator g of Z∗

p, and an element β ∈ Z∗
p,

find an integer x with 0 ≤ x ≤ p− 2 such that gx ≡ β mod p.

2. The generalized discrete logarithm problem (GDLP): given a finite group G of order n, a generator g
of G, and an element β ∈ G, find an integer x with 0 ≤ x ≤ n− 1 such that gx = β.

A few algorithms of solving the DLP and GDLP are studied in the literature. Some of them are described
briefly below.

1. Exhaustive search: The simplest algorithm for GDLP if to compute gi, i = 0, 1, 2, · · · until β = gi.
The complexity takes O(n) multiplications. Wenn the order n of group G is large it is inefficient.

2. Baby-step giant-step algorithm: The baby-step giant-step algorithm is a time-memory trade-off
of the method of exhaustive search. It requires O(

√
n) memory and has running time of O(

√
n)

multiplications.

3. Pollard’s rho algorithm for logarithms: The Pollard’s rho algorithm for logarithms is applied, if
the cyclic group G has a prime order n. It requires the same running time as the baby-step giant-step
algorithm, but only a negligible amount of storage are required. Thus the Pollard’s rho algorithm for
logarithms are more suitable in practice.

4. Pohling-Hellman algorithm: The Pohling-Hellman algorithm computes first the prime factorization
of the order n of group G: n = pe1

1 pe2
2 · · · p

ek
k , then it takes advantage of the factorization. In fact the

it has the running time O(
∑k

i=1 ei(log n +
√

pi) multiplications.
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5. Index-calculus algorithm: The Index-calculus algorithm is the most powerful method known to

compute discrete algorithms. First it selects a relatively small subset S of G, then a significant fraction
of elements of G can be efficiently expressed as products of elements from S. Especially the Pohling-
Hellman algorithm is appropriate for some group, like Fp and F2m . With an optimal choice of the
order of S, this algorithm has an running time of Lq[12 , c] for groups Fq, where q = p or q = 2m, and
c is a constant.

Since DSA-Signature and some other widely applied algorithms use the subgroups of Z∗
p, the discrete

problem in subgroups of Z∗
p has special interest. It is described in the following: given two primes p and q

such that q|p − 1. Let G be a cyclic subgroup of Z∗
p of order q, let g be a generator of G, and let β ∈ G,

find an integer x ∈ Zq such that gx ≡ β mod p. The Pollard’s rho algorithm can solve this problem with
complexity O(

√
q), while the complexity of the index-calculus algorithm (with adaption) is Lp[13 , c].

To give an overview their complexity is listed in Table 2.4.

Algorithm Complexity Remark
exhaustive search O(n)

baby-step giant-step
algorithm

O(
√

n) O(
√

n) memory

(§ 3.6.2 in [70])
Pollard’s rho
algorithm for

logarithms

O(
√

n)

(§ 3.6.3 in [70])
Pohling-Hellman

algorithm
O(

∑k
i=1 ei(log n +

√
pi) n = pe1

1 pe2
2 · · · p

ek
k

(§ 3.6.4 in [70])
index-calculus

algorithm
Lq[12 , c] q = p or q = 2m, c

constant
(§ 3.6.5 in [70])
index-calculus
algorithm (with

adaption)

Lp[13 , c] For DLP in sub-
groups of Z∗

p

(§ 3.6.5 in [70])

Table 2.4.: Complexity of algorithms solving DLP/GDLP

2.4.8. The Diffie-Hellman problems

The Diffie-Hellman problem is closely related to the discrete logarithm problem (DLP). It is significant for
public-key cryptography. The security of many cryptography schemes, e.g. Diffie-Hellman key exchange,
ElGamal public-key encryption and their derivatives base on the intractability of the Diffie-Hellman prob-
lem.

The Diffie-Hellman problem can be further classified into four types.

1. The computational Diffie-Hellman problem (CDHP): let p be a prime. Given a generator g of Z∗
p,

elements x = ga and y = gb of Z∗
p, where a and b are unknown, find gab mod p.

2. The decision Diffie-Hellman problem (DDHP): let p be a prime. Given a generator g of Z∗
p, elements

x = ga, y = gb, and z of Z∗
p, where a and b are unknown, decide whether or not z = gab mod p.
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3. The generalized computational Diffie-Hellman problem (GCDHP): Let G be a cyclic group, given a

generator g of G, elements x = ga and y = gb of G, where a and b are unknown, find gab in group G.

4. The generalized decision Diffie-Hellman problem (GDDHP): Let G be a cyclic group, given a gener-
ator g of G, elements x = ga,y = gb, and z of G, where a and b are unknown, decide whether or not
z = gab in group G.

If there exists an polytime algorithm A which can solve the discrete logarithm problem in Z∗
p, then given

g, p, ga mod p , gb mod p, algorithm A computes first a from ga, and then computes (gb)a = gab. Thus
CDHP polytime reduces to DLP, denoted CDHP ≤ DLP. More generally, GCDHP ≤ GDLP.

Apparently the decision problems polytime reduces to the computational problems. Thus DDHP ≤P

CDHP ≤P DLP and GDDHP ≤P GCDHP ≤P GDLP.

2.4.9. Elliptic curve discrete logarithm problem

The elliptic curve cryptosystem(ECC) bases on the intractability of the elliptic curve discrete logarithm
problem (ECDLP). Since in ECC the elliptic curves over Fp and F2m are mostly applied, the following
discussion is sometimes restricted to these both cases.

The elliptic discrete logarithm problem is given in the following: given an irreducible elliptic curve f(x)
over Fpm , namely f(x) ∈ Fpm [x]. Let P and R be two distinct points on f(x), find a positive integer such
that kP = R.

Recall that the determination of a point kP is referred to as scalar multiplication of a point. The ECDLP
is based upon the intractability of scalar multiplication products. It is widely believed that the elliptic curve
discrete logarithm problem is hard to computationally solve when the point P has a large prime order. The
known algorithms for solving the ECDLP are listed in the following.

1. The Pohlig-Hellman algorithm, it reduces the problem to subgroups of prime order.

2. Shanks’ baby-step giant-step method.

3. Pollard’s methods, especially the parallel Pollard method of van Oorschot and Wiener.

4. The Menezes-Okamoto-Vanstone (MOV) attack using the Weil pairing.

5. The Frey-Rueck attack using the Tate pairing.

6. The attacks on anomalous elliptic curves, i.e. elliptic curves over Fp which have p points) due to
Semaev, Satoh-Araki and Smart.

7. Weil descent for some special finite fields.

Of the above algorithms, only the anomalous curves attack has polynomial running time. The MOV, Frey-
Rueck and Weil descent algorithms are at their fastest subexponential in complexity.

Due to the Pohlig-Hellman algorithm we always restrict to the case where the point P has large prime
order. Then the only algorithms which are applicable for all elliptic curves are the methods of Shanks and
Pollard, and these methods have exponential complexity.

2.4.10. Elliptic curve Diffie-Hellman problems

Elliptic curves can be applied in many cryptosystems. Such as elliptic curve Diffie-Hellman key exchange
(ECDH), elliptic curve DSA (ECDSA), and elliptic curve ElGamal (ECElGmal). The security of those
elliptic curve cryptosystems bases on the intractability of the elliptic elliptic curve Diffie-Hellman problems,
which are closely related to the elliptic curve discrete logarithm problem (ECDLP).

Analog to Diffie-Hellman problems, the elliptic curve Diffie-Hellman problems can be further classified
into the following two types.
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1. The computional elliptic curve discrete Diffie-Hellman problem (CECDHP): given an irreducible

eliptic curve f(x) over Fpm , and P a point on f(x). Let X = kP and Y = tP be points on f(x),
where k and t are unknown positive integers, find the unique third point Z on f(x) such that Z = ktP .

2. The decision elliptic curve discrete Diffie-Hellman problem (DECDHP) given an irreducible eliptic
curve f(x) over Fpm , and P a poit on f(x). Let X = kP , Y = tP and Z be points on f(x), where k
and t are unknown positive integers, decide whether or not Z = ktP .

If there exists a polynomial time algorithm A which solves ECDLP, it can be used to solve CECDHP in
polynomial time. Algorithm A computes first k from kP , and then computes k(tP ) = ktP . Thus CECDHP
polytime reduces to ECDLP, denoted CECDHP≤P ECDLP. Apparently if an algorithm can solve CECDHP
in polynomial time, then it can solve DECDHP in polynomial time. It computes first Z ′ = ktP , and then
compares Z ′ and Z. Hence DECDHP polytime reduces to CECDHP. As result, DECDHP ≤P CECDHP
≤P ECDLP.



3. Cryptographic Backgrounds

Cryptography is the study of mathematical techniques related to aspects of information security such as
confidentiality, data integrity, entity authentication, and data origin authentication. Some 4000 years ago,
cryptography was used by Egyptians. Later it was most applied in diplomatic, military and governmental
services. Since 1960s as the computers and communications systems booms, cryptography finds its appli-
cation in private services.

The Data Encryption Standard (DES) is one of the most well-known symmetric cryptosystems. Due to its
short key length, it is considered today to be insecure. Hence the Advanced Encryption Standard (AES) was
selected as new FIPS standard for symmetric encryption. There are other well-known symmetric schemes,
such as IDEA, FEAL, SAFER and RC5.

Diffie and Hellman [28] introduced in 1976 a new concept of public-key cryptosystem which based on the
Diffie-Hellman problem. Years later, [61] and [71] introduced a variant of the Diffie-Hellman key exchange,
based on the difficulty of the DL problem in the group of points of an elliptic curve (EC) over a finite field.
Cryptosystems using EC request much less computation as those cryptosystems without application of EC.
Another well-known public cryptosystem based on the difficulty of the RSA problem was introduced in
[97]. It is widely used for the digital signature.

The rest of this chapter is organized as follows: Section 3.1 lists some of the most important security
goals of cryptography. Then some cryptography mechanisms that are important for this master thesis will
be discussed: the symmetric-key encryption with description of AES in Section 3.2, the public-key encryp-
tion with description of RSA in Section 3.3, the hash function in Section 3.4, and digital signatures with
description of EC-DSA in Section 3.5.

3.1. Security Goals

Cryptography is not the only possibility to provide information security, but the most important one. Some
cryptography mechanisms will be addressed in the following sections. Cryptography can be used to achieve
the following security properties.

1. Confidentiality: It prevents all but those authorized from having the content of the message. There are
multiple possibilities to provide confidentiality. They vary from physical to mathematical methods.
For example the information to be protected, such as the key, is stored in a room that can only be
accessed by the authorized users. Using some encryption algorithms the information can be encrypted
so that only the user who has the proper keys and knows the algorithms is able to decrypt it. Encryption
can further be roughly classified into two categories: symmetric key encryption (Section 3.2) and
public key encryption (Section 3.3).

2. Integrity: It prevents unauthorized users from altering data. To assure data integrity, one must be
able to detect any unauthorized manipulation of data, such as deletion and insertion. One of the
cryptographic approaches to achieve integrity is digital signatures (Section 3.5). Another possibility
is given by hash functions (Section 3.4).

3. Non-repudiation: It prevents an entity from denying previous actions. In other words, it is a method
by which the sender of data is provided with proof of delivery and the recipient is assured of the
sender’s identity, so that neither can later deny having processed the data. For example, someone who
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submits electronic order should not be able to deny it later. One of the cryptographic approaches to
achieve non-repudiation is digital signatures (Section 3.5).

4. Availability: The service should be available all the time. It must be robust enough to tolerate network
failures and must be resistant against Denial-of-Service (DoS) attacks. Since availability is not an
issue of this thesis, we refer the reader to the literature for more information.

5. Authentication: Authentication is classified into two categories: entity authentication and data origin
authentication. In the first case any party entering into a communication session must identify them-
selves to other participants. In the second case, sent data should be authenticated with respect to its
content, time of sending, etc.

Together with key establishment, authentication is the basis of any secure communication. Without some
form of authentication, all the other common security properties such as integrity or confidentiality are not
more significative.

Authentication bases generally on long-term keys1 which can be associated with identities. To associate
identities with long-term keys, some techniques can be applied. For example a public-key infrastructure
(PKI) provides parties with some mechanisms for secure key registration and secure access to long-term
keys of prospective peers. The PKI is not an issue of this thesis, because no existing PKIs can be assumed in
an ad hoc networks. Hence we refer the reader to literatures such as [82, 45] for more information. Besides
the PKI the key transport can also be applied to provides long-term key. Usually there are trusted third-
parties known as key distribution centers mediate session keys such as KryptoKnight [72, 48] and Kerberos
[68, 69].

Security properties - such as authentication, integrity and confidentiality - are normally only meaningful,
if a communication channel is guaranteed during the related session. In order to provider some other secu-
rity properties, some temporary keys will be applied. Against long-term keys, temporary keys provide the
following properties:

1. To minimize the amount of cryptographic material available to cryptanalytic attacks;

2. To minimize the exposure when keys are lost;

3. To make different and unrelated sessions independent;

4. Deriving symmetric session keys from long-terms keys which base on asymmetric cryptography
brings a considerable gain in efficiency.

The establishment of such temporary keys, usually called session keys, often involves interactive crypto-
graphic protocols. These protocols should ensure that all required security properties, such as authenticity
and freshness of the resulting session key, are guaranteed. Such protocols are referred to as key establish-
ment protocols and are the focus of this thesis. Different issues of key establishment will be described in
Sections 3.8, 4, and 5.

3.2. Symmetric-Key Encryption

Given an encryption scheme (P, C,K, {Ee : e ∈ K}, {Dd : e ∈ K}), where P is the set of all plaintexts, C
is the set of ciphertexts, K is the set of all keys, Ee is encryption transformation, and Dd is the decryption
transformation.

The encryption scheme is defined to be symmetric if for all associated encryption/decryption key pairs
(e, d), it is computationally ,,easy“ to determine d knowing only e, and to determine e knowing d. In most
practical symmetric-key schemes the keys for encryption and decryption are the same.

1Long-term key covers all forms of information which can be associated to identities. For example, it not only includes crypto-
graphic keys such as DES or RSA keys but also encompasses passwords and biometric information.
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Figure 3.1.: A two-party communication using symmetric-key encryption

Figure 3.1 illustrates a two-party communication using symmetric-key cryptosystem. Alice encrypts
the plaintext with the key e and then transports the ciphertext c to Bob via unsecured channel. Since in
symmetric-key encryption d can be derived from e easily, e must be transported in a secure channel. Since
the ciphertext is transformed via unsecured channel, it could be modified. Thus the ciphertext received by
Bob is denoted c′. After receiving the ciphertext c′ and encryption key e. Bob derives the decryption key d
from e, and then decrypts the ciphertext using d as key. If the ciphertext was modified, Bob will let Alice to
send him the ciphertext again.

Symmetric-key schemes can be further classified into more classes, the same as public-key schemes. Two
of the mostly used are block ciphers and streaming ciphers.

3.2.1. Symmetric-key block ciphers

Symmetric-key block ciphers are the most important elements in many cryptographic systems. Individu-
ally, they provide confidentiality. As a fundamental building block, their versatility allows construction of
pseudorandom number generators, stream ciphers, MACs, and hash functions. They may furthermore serve
as a central component in message authentication techniques, data integrity mechanisms, entity authentica-
tion protocols, and (symmetric-key)digital signature schemes.

A block cipher is an encryption scheme. The plaintext messages are broken into blocks of a fixed length
l, and then each block is encrypted at a time. If l does not divide the message length, the last block will be
padded up to l.

Two basic classes of block ciphers, substitution cipher and transposition cipher, will be first introduced,
while product ciphers which combines the properties of both above will be studied in the rest of this section.

3.2.1.1. Substitution ciphers

In substitution ciphers, symbols or groups of symbols are replaced by other symbols or groups of symbols.
Three important classes of substitution ciphers are simple substitution ciphers, homophonic substitution
ciphers, and polyalphabetic substitution ciphers. Simple substitution ciphers will be described in the fol-
lowing, for details about the other two ones please reference to pages 17-18 in [70].

Given a set A of some symbols. LetM be the set of all strings of length k over A and let K be the set of
all permutations on A. Ee is defined in following: For m = (m1m2 · · ·mk) ∈M, e ∈ K,

Ee := (e(m1)e(m2) · · · e(mk)) = (c1c2 · · · ck) = c (3.1)
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To decrypt the ciphertext c an inverse permutation of e, d := e−1, is applied. For a given c = (c1c2 · · · ck),

Dd := (d(c1)d(c2) · · · d(ck)) = (m1m2 · · ·mk) = m. (3.2)

3.2.1.2. Transposition ciphers

In this section we describe a simple transposition cipher, which permutes the symbols of one block.
Given a symmetric-key block encryption, where each block consists of t subblocks of the same length.

LetM be the set of all messages, and K be the set of all permutations on the subsets. For each e ∈ K and
m = (m1m2 · · ·mt) ∈M the encryption function is defined as follows.

Ee(m) = (me(1)me(2) · · ·me(t)) (3.3)

The decryption key corresponding to e is the inverse permutation d = e−1. The following transposition
is used to decrypt c = (c1c2 · · · ct).

Dd(c) = (cd(1)cd(2) · · · cd(t)). (3.4)

For the same key, each combination of symbols is transported to fixed combination of symbols, which
confuses surely the crytoanalyse such as the observation of the distribution of letter frequencies. However it
is possible to break some transposition ciphers with anagramming technique.

3.2.1.3. Product ciphers

Simple substitution and transposition ciphers individually do not provide a very high level of security. Yet
by combining these transformations it is possible to obtain strong ciphers. The most practical and effective
symmetric-key systems are product ciphers, e.g. AES [80], DES [23], FEAL [35], IDEA [67], SAFER (§7.7
in [70]), Triple-DES [23], and RC5 [11]. The essential block cipher AES will be introduced in following.
For brevity, the following description omits the exact transformations and permutations which specify the
algorithm.

Advanced Encryption Standard (AES), also known as Rijndael, was designed by Vincent Rijmen and
Joan Daemen, and was adopted by National Institute of Standards and Technology (NIST) as US FIPS PUB
197 [80] in November 2001 after a 5-year standardization process.

Unlike its predecessor DES, Rijndael uses substitution-permutation instead of Feistel function. AES has
a fixed block size of 128 bits and a key size of 128, 192 or 256 bits.

AES operates on a 4× 4 array of bytes, termed the state. For encryption, each round of AES (except the
last round) consists of four stages, while the final round omits the MixColumns stage.

1. SubBytes: Each byte in the array is updated using an 8-bit S-box. This operation provides the non-
linearity in the cipher. The S-box used is derived from the inverse function over F28 , known to have
good non-linearity properties. To avoid attacks based on simple algebraic properties, the S-box is
constructed by combining the inverse function with an invertible affine transformation. The S-box is
also chosen to avoid any fixed points (and so is a derangement), and also any opposite fixed points.
The mechanism is illustrated in Figure 3.2.

2. ShiftRows: It operates on the rows of the state; it cyclically shifts the bytes in each row by a certain
offset. For AES, the first row is left unchanged. Each byte of the second row is shifted one to the left.
Similarly, the third and fourth rows are shifted by offsets of two and three respectively. In this way,
each column of the output state of the ShiftRows step is composed of bytes from each column of the
input state. The mechanism is illustrated in Figure 3.3.
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Figure 3.2.: SubBytes function for AES
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Figure 3.3.: ShiftRows function for AES

3. MixColumns: In this step, the four bytes of each column of the state are combined using an invert-
ible linear transformation. Together with ShiftRows, MixColumns provides diffusion in the cipher.
Each column is treated as a polynomial over F28 and is then multiplied modulo x4 + 1 with a fixed
polynomial c(x). The mechanism is illustrated in Figure 3.4.

4. AddRoundKey: In this step, the subkey is combined with the state. For each round, a subkey is
derived from the main key using the key schedule; each subkey has the same size as the state. The
subkey is added by combining each byte of the state with the corresponding byte of the subkey using
bitwise XOR. The mechanism is illustrated in figure 3.5.

3.2.2. Streaming ciphers

Due to the fixed relation between some plaintext and ciphertext in the simple substitution cipher and in the
simple transposition cipher, both ciphers do not provide enough security against attacks, e.g. cryptoanalysis.
Security can be achieved if encryption transformation changes for each symbol of plaintext being encrypted.
This provide streaming ciphers.

Let K be the key space for a set of encryption transformations, and let A be an alphabet of symbols.
Given a simple substitution cipher Ee with block length t where e ∈ K. Let (m1m2m3 · · · ), mi ∈ A,
be a plaintext string and let (e1e2e3 · · · ) be a key stream in K. Then the ciphertext string (c1c2c3 · · · ) =
(Ee1(m1)Ee2(m2)Ee3(m3) · · · ).

The variation of the key makes it more secure. A secure algorithm should be applied to generate the
stream. We call such an algorithm a key stream generator, such as Cipher Block Chaining (CBC), Cipher

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3
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a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

MixColumns

⊗c(x)⊗c(x)

⊗c(x)⊗c(x)

Figure 3.4.: MixColumns function for AES
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Figure 3.5.: AddRoundKey function for AES

Feedback (CFB), and Output Feedback (OFB). The generator can generate the key at random, or from an
initial value called seed, or both.

3.3. Public-Key Encryption

Given an encryption scheme (P, C,K, {Ee : e ∈ K}, {Dd : e ∈ K}), where P is the set of all plaintexts, C
is the set of ciphertexts, K is the set of all keys, Ee is encryption transformation, and Dd is the decryption
transformation.

Public-key encryption schemes base on the intractability of solving some computational problems. Con-
sider any pair of associated encryption/decryption transformations (Ee, Dd) and suppose that each pair has
the property that knowing Ee it is computationally infeasible, given a random ciphertext c ∈ C, to find the
message m ∈M such that Ee(m) = c. This property implies that given an encryption key e it is infeasible
to determine the corresponding decryption key d. However e can be derived from d.

plaintext
source

encryption
Ee(m) = c

key source

decryption
Dd(c) = m

destination

passive
adversary

e

unsecured channel

unsecured channel

c

m
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Figure 3.6.: A two-party communication using public-key encryption

Figure 3.6 illustrates a two-party communication using public-key cryptosystem. Bob generates first a
keypair (e, d), and then transports only public key e to Alice via any channel, but the secret key d should be
kept secure and secret. Alice can subsequently encrypt a message m using the pulic key of Bob, c = Ee(m).
The encrypted message could now be sent via any channel to Bob. Bob decrypt subsequently the ciphertext
using the corresponding secret key, m = Dd(c).

As described in Figure 3.6, the public key need not to be kept secret (in fact, it may be widely available),
only its authentication should be verified. Hence it is much easier to distribute the public key than to
distribute the symmetric key.

The main objective of public-key encryption is to provide privacy or confidentiality. Due to the public
knowledge of the encryption transformation, public-key encryption alone does not provide data authenti-
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cation, source authentication, or data integrity. To achieves such goals some additional techniques, such
as message authentication codes (MAC) and digital signatures, must be applied. Public-key encryption
schemes are typically much slower than symmetric-key encryption. It is usually applied together with the
symmetric-key encryption. The message is usually encrypted with symmetric-key encryption, whose keys
are transported using public-key encryption. Some other small data items such as credit card numbers and
PINs can be also encrypted by public-key encryption.

Many of public-key encryption schemes are related to computational problems listed in Table 3.1. Some
of the problems are described in Section 2.4. The detail of others can be found in the literature. Two of
those, RSA and ElGamal encryption schemes will be described below.

public-key encryption scheme related computational problem
RSA integer factorization problem

RSA problem
Rabin integer factorization problem

square roots modulo composite n

ElGamal discrete logarithm problem
Diffie-Hellman problem

generalized ElGamal generalized discrete logarithm problem
generalized Diffie-Hellman problem

McEliece linear code decoding problem
Merkle-Hellman knapsack subset sum problem (§ 3.10 in [70])

Chor-Rivest knapsack subset sum problem (§ 3.10 in [70])
Goldwasser-Micali probabilistic quadratic residuosity problem (§ 3.4 in

[70])
Blum-Goldwasser probabilistic integer factorization problem

Rabin problem (§ 3.9.3 in [70])

Table 3.1.: Some public-key encryption schemes, and the related computational problems

3.3.1. RSA encryption

The RSA encryption scheme was released as a MIT ,,Technical Memo“ in April 1977, and later published
in 1978 by Ron Rivest, Adi Shamir and Len Adleman in [97]. It bases on the intractability of solving the
RSA problem, which polytime reduces to the integer factorization problem. In RSA encryption scheme, a
key pair (e, d) is first generated using algorithm 3.1.

Algorithm 3.1 (Key generation for RSA public-key encryption)
Input: key bit length l.

Output: keypair (e, d).

1. Generate two random (and distinct) primes p and q independently, roughly of l
2 bits.

2. Compute n = pq and φ(n) = (p− 1)(q − 1).

3. Select a random integer e, 1 < e < φ, such that gcd(e, φ) = 1.

4. Use the extended Euclidean algorithm to compute the unique integer d, 1 < d < φ, such that ed ≡ 1
mod φ.

5. The public key (e, n), and private key (d, n).



34 Cryptographic Backgrounds
Remark: Because of some attacks, RSA Standard PKCS#1 version 2.1 [99] uses λ(n) = lcm(p−1, q−1)

instead of φ = (p−1)(q−1). In order to calculate more efficiently, the Chinese Remainder Theorem (CRT)2

is commonly used to decrypt the ciphertext. Hence some values related to CRT are computed in the key
generation, such as p’s CRT exponent dP ≡ e−1 mod (p−1), q’s CRT exponent dQ ≡ e−1 mod (q−1),
and CRT coefficient qInv ≡ q−1 mod p. In this case, the public key is still (e, n), but the private key is
extended to be (d, p, q, dP, dQ, qInv).

Assumed entity A will send message m to entity B. First A obtains the public key of B (e, n), and com-
putes the ciphertext c = me mod n, subsequently A sends the ciphertext to B. After receipt of ciphertext
c, B decrypts c with its corresponding private key. If (e, n) is used, then m ≡ cd mod n. The scheme
is correct since ed ≡ 1 mod φ(n), cd ≡ med ≡ med mod φ(n) ≡ m mod n. Otherwise CRT is used to
decrypt c.

One measure of the security of RSA is the length of the modulus n. Theoretical hardware device TWIRL
described by Shamir and Tromer in 2003 called into question the security of 1024 bit keys [119]. In 1998,
Daniel Bleichenbacher described the first practical adaptive chosen ciphertext attack, against RSA-encrypted
messages using the PKCS#1 v1 padding scheme [16]. Thus RSA Laboratories has released new versions of
PKCS #1 that are not vulnerable to these attacks.

3.3.2. ElGamal encryption

The ElGamal algorithm bases on the intractability of solving discrete logarithms. It was proposed by Taher
ElGamal in 1984 [33, 34].

As with all asymmetric key encryption algorithms, ElGamal consists of three components: the key gen-
eration algorithm (algorithm 3.2), the encryption algorithm (algorithm 3.3), and the decryption algorithm
(algorithm 3.4).

Algorithm 3.2 (Key generation for ElGamal public-key encryption)
Input: key bit length l.

Output: keypair (pubkey, privkey).

1. Generate a large random prime p of l bits, and a generator g from Z∗
p.

2. Select a random integer a in interval [1, p-2], and compute ga mod p.

3. The public key pubkey = (p, g, ga), and the private key is privkey = a.

Algorithm 3.3 (ElGamal public-key encryption)
Input: public key (p, g, ga), message m ∈ Zp.

Output: ciphertext c

1. Choose a integer random t from interval [1, p− 2].

2. Compute c1 ≡ gt mod p, and c2 ≡ m · (ga)t mod p.

3. Get ciphertext c = (c1, c2).

2CRT can be generalized as follows. Given a set of simultaneous congruences

x ≡ xi mod mi, i = 1, 2, ..., r,

where the mi are pairwise prime. The solution of the set of congruences is

x ≡
Pr

i=1 xiyi
M
mi

mod M ,

where M = Πr
i=1mi, and yi =

�
M
mi

�−1

mod mi.
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Algorithm 3.4 (ElGamal public-key decryption)
Input: ciphertext c = (c1, c2), private key a and public key (p, g, ga).

Output: message m.

1. Compute cp−1−a
1 ≡ c−a

1 mod p.

2. Recover the message m = c−a
1 · c2 ≡ g−at ·m · (ga)t ≡ m mod p.

The security of ElGamal bases, in part, on the intractability of solving the discrete logarithm problem
(DLP) in finite group. However, the security of ElGamal actually relies on the intractability of solving the
Computational Decisional Diffie-Hellman problem (CDHP).

3.4. Hash Functions

Hash function, often called a one-way hash function, is one of the fundamental primitives in modern cryp-
tography.

A hash function H is a transformation that takes an input m and returns a fixed-size string, which is
called the hash value h. We call this transformation H(�), that is, h = H(m). Hash functions with just this
property have a variety of general computational uses, but when employed in cryptography, hash functions
are usually chosen to have some additional properties.

The input of a cryptographic hash function H(·) can be of any length, while the output must have a fixed
length, and H(·) should be relatively easy to compute. H(·) should be further one-way and collision-free.

A hash function H is said to be one-way if it is hard to invert. That is, given a hash value h, it is
computationally infeasible to find some input x such that H(x) = h.

A function H is said to be weakly collision-free, if given a message x, it is computationally infeasible to
find a message y 6= x such that H(x) = H(y). A strongly collision-free hash function H is one for which
it is computationally infeasible to find any two messages x and y such that H(x) = H(y).

For more information and a particularly thorough study of hash functions, see [92].
The hash value represents concisely the longer message or document from which it was computed; this

value is called message digest. One can think of a message digest as a digital fingerprint of the larger
document. Examples of well known hash functions are MD-family (MD2 [53], MD4 [94, 95], and MD5
[96]), RipeMD-family (RIPEMD-128 [30], RIPEMD-160 [30], RIPEMD-256 [30], RIPEMD-320 [30]),
and SHA-family (SHA-1 [78, 81], SHA-256 [81], and SHA-384 [81], SHA-512 [81]).

The most cryptographic functions use compression functions to compress the data. A compression func-
tion takes a fixed-length input and returns a shorter, fixed-length output. Given a compression function, a
hash function can be defined by repeated application of the compression function until the entire message
has been processed. In this process, a message of arbitrary length is broken into blocks whose length de-
pends on the compression function, and ,,padded“ so that the size of the message is a multiple of the block
size. For example the block size of SHA-1 and RIPEMD-160 is 512 bits. The blocks are then processed
sequentially, taking as input the result of the hash so far and the current message block, with the final output
being the hash value for the message. This process is illustrated in Figure 3.7.

Cryptographic hash functions are commonly used for digital signatures and for data integrity. Since hash
functions are generally faster than encryption or digital signature algorithms, it is typical to compute the dig-
ital signature or integrity check to some document by applying cryptographic processing to the document’s
hash value, which is smaller compared to the document itself.

Cryptographic functions may be applied for the data integrity. The hash value for an input m will be
computed at some point in time. At a subsequent point in time, the integrity of m can be verified by
recomputing the hash-value of m and comparing it with the original hash value.
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Figure 3.7.: Iterative structure for hash functions

The fourth application of cryptographic hash functions is to derive key information from some secret. In
the group key agreement, it will be used to derive keys for authentication, symmetric encryption, from the
agreed group key.

3.5. Digital Signatures

Digital signature is a method of authenticating digital information often treated, as analogous to a physical
signature on paper. Digital signatures allow an entity to bind its identity to a piece of information.

LetM be a set of possible messages which can be signed, and S a set of all possible signatures, and let
V := {true, false}. Two transformations are defined in the following.

1. The signing transformation of entity A: SA := M → S. That means that SA is a transformation from
the message set to the signature set.

2. The verifying transformation of entity A’s signatures: VA :=M×S → V .

Of the two transformations, SA must be kept secret and secure, and is used to sign a message, while VA

must be publicly known, and is used to verify the signatures signed for the message by A.
Suppose that entity A wishes to send a message m with its signature to B. A gets the signature through

s = SA(m). It transmits then the message with the signature (m, s) to entity B. B must first obtain the
verifying transformation for A’s signature, then calculates VA(m, s). If the result is true, then B accepts
the signature, otherwise rejects the signature.

A signature is called unforgeable if it is computationally infeasible for any entity other than A to find an
s ∈ S, for any m ∈M, such that VA(m, s) = true.

They can be roughly be classified into two types.

1. Digital signature schemes with appendix: It requires the message as input to the verification algo-
rithm. Examples of mechanisms providing digital signatures with appendix are the DSA [77], ECDSA
[6], ElGamal [34], and Schnorr (§11.5.3 in [70]) signature schemes. Digital signature schemes with
appendix are in practice most commonly used.

2. Digital signature schemes with message recovery: The signature can be verified without knowing
of original message, and the message can be derived from the signature. Examples of mechanisms
providing digital signatures with message recovery are RSA [97], Rabin [93], and Nyberg-Rueppel
[87] public-key signature schemes. However, they are only suitable for short messages, For example,
in an RSA signature scheme, it can only sign a message m which is less than the modulus n.

Any digital signature scheme with message recovery can be turned into a digital signature scheme with
appendix by simply hashing the message and then signing the hash value. The message is now required
to verify the signature, more exactly, to verify the hash value. In fact, the most in practice applied digital
signatures schemes, of both types, hash first the message and then sign the hash value. A typical scenario
using hash value instead of the message is illustrated in Figure 3.8. An example, the ECDSA signature
scheme, will be described in following to explain the scenario mentioned above.
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Figure 3.8.: A digital signature scheme using hash value

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of the Digital Signature Algorithm
(DSA) which operates on elliptic curve groups. It was proposed as ANSI Standard under the number ANSI-
X9.62 [6] (working draft). In ECDSA elliptic curves over Fp and F2m are used. In the following the
parameters for both curves, the keypair generation (algorithm 3.5, signature generation (algorithm 3.6) and
verification algorithm (algorithm 3.7) will be discussed.

Elliptic curve domain parameters over Fp or F2m shall consist of the following parameters:

1. A field size q which defines the underlying finite field Fq.

a) q = p for Fp, where p is a prime greater than 3.

b) q = 2m for F2m ,m ∈ N.

2. (Optional) A bit string SEED of length at least 160 bits.

3. Two field elements a and b in Fq which define the equation of the following elliptic curve.

a) E : y2 = x3 + ax + b for Fp, and 4a3 + 27b2 6≡ 0 mod q;

b) E : y2 + xy = x3 + ax2 + b for F2m , and b 6= 0.

4. Two field elements xG and yG in Fq which define a point G = (xG, yG) of prime order on E such
that G 6= O.

5. The prime order n of the point G (it must be the case that n > 2160 and n > 4
√

q).

6. (Optional) The cofactor h = |E(Fq)|/n.

For convenience, we define PARAM to be a set of elliptic curve domain parameters: PARAM :=
(q, [SEED], a, b, xG, yG, n, [h]). The square brackets mean that the element is optional.

Algorithm 3.5 (Key pair generation of ECDSA)
Input: A valid PARAM .

Output: A key pair (Q, d) associated with PARAM .

1. Choose an integer d from interval [1, n-1] at random.

2. Compute the point Q = (xQ , yQ) = dG.

3. If Q = O then go to step 1.
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4. The key pair is (Q, d), where Q is the public key, and d is the private key.

For convenience, we define Equation 3.5 which converts the element α of a point R(α, β) to an integer x
(the same for β).

x =
{

α, for Fp;∑m−1
i=0 2iαi, for F2m , α = (αm−1 · · ·α1α0)2.

(3.5)

Algorithm 3.6 (Signature generation of ECDSA)
Input: A message m, a valid PARAM , a private key d, a hash function H .

Output: A digital signature (r, s), where 1 ≤ r, s ≤ n− 1.

1. Compute the hash value h using hash function H : h = H(m).

2. Modular computations:

2.1. Choose a integer t from interval [1, n− 1] at random.
2.2. Compute the elliptic curve point R(xR , yR) = tG.

3. Modular Computations:

3.1. Convert xR to an integer x according to Equation 3.5.
3.2. If x = 0 then go to step 2.1, otherwise r = x.
3.3. Compute s = t−1(h + dr) mod n.
3.4. If s = 0 then go to step 2.1.

4. Return a digital signature (r, s).

Algorithm 3.7 (Signature verification of ECDSA)
Input: A message m′, a signature (r′, s′), a valid PARAM , a public key Q, a hash function H .

Output: Accept or reject the signature.

1. Compute the hash value h′ using hash function H : h′ = H(m′).

2. Modular Computations:

2.1. If r′ or s′ is not in interval [1, n− 1], then reject the signature.
2.2. Compute c = s′−1 mod n.
2.3. Compute u1 = h′c mod n and u2 = r′c mod n

3. Compute the elliptic curve point R′(x
R′ , yR′ ) = u1G + u2G.

4. Signature Checking:

4.1. if R′ = O, reject the signature.
4.2. Convert x

R′ to an integer x according to Equation 3.5.
4.3. Compute v = x mod n.
4.4. If r′ = v, then accept the signature, otherwise reject the signature.
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3.6. Key Size

In [64], Lenstra et al. report on the minimum key lengths required for secure symmetric-key cryptosystems,
RSA, and discrete logarithm based cryptosystems both over finite fields and over groups of elliptic curves
over prime fields.

According to table 1 in [64], to provide adequate protection against the most serious threats, for well-
funded commercial enterprises and government intelligence agencies, keys used to protect data today (2006)
have to satisfy:

1. Symmetric keys of at least 75 bits. Therefore AES with all key length variations, Triple-DES can be
used, and DES should be deprecated.

2. Hash functions of at least 150 bits. So SHA-13 and RIPEMD-160 can be used, but MD4 and MD5
not.

3. RSA moduli of at least 1191 bits;

4. Subgroup discrete logarithm systems with subgroups whose order is at least 133 bits with finite fields
of at least 1191 bits.

5. Elliptic curve systems over prime fields with primes of at least 141 bits if one is confident that no
cryptanalytic progress will take place, at least 148 bits if one prefers to be more careful.

Hence, hash functions which provides not less than 150 bit output, such as SHA-1, RIPEMD-160 can be
used, while MD4, MD5, and RIPEMD-128 which provide only 128 bits output must be deprecated.

To protect information adequately for the next 20 years, namely until 2026, in the face of expected ad-
vances in computing power, the key length should be updated as follows:

1. Symmetric keys of at least 90 bits. So AES and Triple-DES can still be used.

2. Hash functions of at least 180 bits. So SHA-1 and RIPEMD-160 should no more be applied, but their
successors, SHA-256 and RIPEMD-256.

3. RSA moduli of at least 2236 bits;

4. Subgroup discrete logarithm systems with subgroups whose order is at least 160 bits with finite fields
of at least 2236 bits.

5. Elliptic curve systems over prime fields with primes of at least 170 bits if one is confident that no
cryptanalytic progress will take place, at least 205 bits if one prefers to be more careful.

3.7. Two-Party Key Exchange

Diffie and Hellman [28] developed the original Diffie-Hellman key agreement protocol (DHKE) in 1976.
The protocol depends on the Diffie-Hellman problem for its security. It allows two users to exchange a
secret key over an insecure medium without any prior secrets.

Due to failure of authentication of the participants, the basic DHKE is vulnerable to a man-in-the-middle
attack. In resent years a number of approaches to solve this problem have been researched. An approach
to derive a shared secret from some weak shared key such as password, without using Diffie-Hellman key
exchange, is present in Section 3.7.2. Another of them, password authenticated Diffie-Hellman key exchange
is described in Section 3.7.3.

3However, collisions of SHA-1 can be found with complexity less than 269 hash operations [123].
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3.7.1. Basic Diffie-Hellmann key exchange

In the original DH protocol, suppose two players A and B want to agree on a shared secret key, they proceed
as follows: First, they agree on a prime p and a generator g of the multiplicative group Z∗

p. Then A and B
generate randomly private values SA and SB from Z∗

p respectively (more generally, instead of Z∗
p, any cyclic

subgroup of order q) can be used along with randomly chosen secrets from Zq). Then they derive their public
values gSA and gSB , and exchange them. Finally, A computers (gSB )SA mod p, and B computes (gSA)SB

mod p. Since (gSB )SA = (gSA)SB = gSASB , A and B now have a shared secret key SAB = gSASB mod p.
The main drawback of the original DHKE protocol is that it is vulnerable to a man-in-the-middle attack.

In this attack, an opponent C intercepts A’s public value and sends her own public value to B. When B
transmits his public value, C substitutes it with her own and sends it to A. C and A thus agree on one shared
key and C and B agree on another shared key. After this exchange, C simply decrypts any messages sent
out by A or B, and then reads and possibly modifies them before re-encrypting with the appropriate key
and transmitting them to the other party. This vulnerability is present because Diffie-Hellman key exchange
does not authenticate the participants. Possible solutions include the use of digital signatures and other
protocol variants, such as STS protocol developed by Diffie et al. in [29], and password authenticatedDH
key exchange presented by Bellovin and Merrit in [14] which will be discussed in Section 3.7.3.

The former protocol allows two parties to authenticate themselves to each other by using digital signatures
and public-key certificates. Roughly speaking, the basic idea is as follows. Prior to execution of the protocol,
the two parties A and B each obtain a public/private key pair and a certificate for the public key. During
the protocol, A computes a signature on certain messages, including the public value ga mod p. B proceeds
in a similar way. Even though an adversary is still able to intercept messages between A and B, he cannot
forge signatures without A’s private key and B’s private key. Hence, the enhanced protocol is resistant to
man-in-the-middle attacks.

In recent years, the original Diffie-Hellman protocol has been understood to be an example of a much
more general cryptographic technique, that is the derivation of a shared key from one party’s public key and
another party’s private key. The parties’ key pairs may be new generated at each run of the protocol, as in the
original Diffie-Hellman protocol. The public keys may be certified, so that the parties can be authenticated.

3.7.2. Generic password authenticated key exchange

In [14], Bellovn and Merrit addressed a protocol called encrypted key exchange (EKE). The involved two
parties derive a strong session key from only a weak shared key, in practice usually password, so that it is
resistant to dictionary attacks. There are a number of variants of EKE, one of them is described in Section
3.7.3. But the basic form remains unchanged. Let A and B be two parties which share a weak secret P . A
has a random key pair (EA, DA), where EA is key for encryption, respectively, DA is key for decryption.
They want to share a strong secret over an insecure channel. The process is illustrated in Protocol 3.1.

Protocol 3.1 (Generic password authenticated key exchange)

1. A encrypted EA using P as key and sends the result together with its identity to B.
A A,P (EA)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
B

2. First, B decrypts the message to get EA. B chooses then randomly R and encrypts it with EA. Then
the result is encrypted using P as key and sent to A.
A P (EA(R))

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B

3. A generates random challengeA and a secret SA and encrypts them using R as key. The result is sent
to B.
A R(challengeA , SA)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
B
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4. B does the same as A in step 3. Additionally h(challengeA)4 is added to the message to convince A

on the knowledge of R, thus that of P .
A R(h(challengeA), challengeB , SB)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B

5. Now A is sure that B knows P . He should now convince B that he also knows P .
A R(challengeB )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
B

At the end of the protocol, both parties are confirmed that the other party knows the shared weak secret
P , and share a strong secret KAB = f(SA, SB), where f is a public one-way function.

However, this basic protocol of EKE cannot be directly extended to form a contributory group key agree-
ment. Hence it is slightly modified by Asokan and Ginzborg in [8] to solve the above mentioned problem.
The idea is to use the secrets SA and SB instead of the challenges challengeA and challengeB to confirm
that the other party does know the shared weak secret. The process is illustrated in Protocol 3.2 (We list only
the communication flow, and use same notations as in the basic EKE).

Protocol 3.2 (Modified generic password authenticated key exchange)

1. A A,P (EA)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B

2. A P (EA(R,SB))
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B

3. A R(SA)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B

4. A K(SA, f(SA, SB))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B

5. A K(SB, f(SA, SB))
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B

The shared strong secret is now K = f(SA, SB).

3.7.3. Password authenticated Diffie-Hellman key exchange

We present here one version of the EKE which is based on Diffie-Hellman key exchange for two parties. Let
A and B be two parties who want to share a strong secret and have shared a weak secret P before the key
exchange. The process is illustrated in Protocol 3.3.

Protocol 3.3 (Password authenticated Diffie-Hellman key exchange)

1. A generates randomly a secret SA, computes its public value gSA , then encrypts it with P , finally A
sends its encrypted public value together with its identity to B.
A A, P (gSA)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
B

2. First, B decrypts the message to get gSA . Secondly B chooses a random secret SB and a random
challenge challengeB . B then computes the session key K = (gSA)SB = gSASB and its public value
gSB . B encrypts gSB with P , challengeB with K. Finally both encrypted data is sent to A.
A P (gSB ),K(challengeB )

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B

4h is a public one-way function.
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3. A extracts the message to get B’s public value and challenge. Using the extracted gSB it computes

the session key K = (gSB )SA = gSASB . Similarly, A chooses challengeA and sends the encrypted
challenges challengeA and challengeB to B using K as key.
A K(challengeA , challengeB )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
B

4. B sends encrypted A’s challenge back to A to ensure that B knows the session key.
A K(challengeA)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B

Now both parties A and B are convinced that the partner does know the shared weak secret, and they
share a strong secret K = gSASB .

3.7.4. 2-Party elliptic curve Diffie-Hellman

In the elliptic curve Diffie-Hellman (ECDH) key exchange, the two communicating parties A and B agree
beforehand to use the same curve parameters and base point G. They each generate their private keys SA

abd SB , respectively, and the corresponding public keys PA = SA · G and PB = SB · G. Both parties
A and B exchange their public keys, and each multiplies its private key with the other party’s public key.
SA · PB = SB · PA = SASB ·G.

3.8. Group Key Management

The primary goal of key group key management is to share a secret among a specified set of partici-
pants. Many approaches can be used to achieve this goal. The main approaches are key transport, key
pre-distribution, and key agreement. The latter is the focus of this thesis.

The rest of this section is organized as follows: Section 3.8.1 gives an overview of key pre-distribution
schemes, while Section 3.8.2 describes briefly key transport schemes. The rest discusses issues in key
agreement schemes, especially in context of group key agreement, e.g. cryptographic properties, group
events, and criteria to measure group key agreement schemes.

3.8.1. Key pre-distribution schemes

In a key pre-distribution scheme, some secret key information is distributed to all nodes before the communi-
cation. If the structure is known, more restrictedly, if the nodes know their neighborhood before deployment,
pairwise keys can be established between these nodes (and only these nodes). But for some networks, e.g.
ad hoc networks, the network topology is random.

A solution is to store an identical master secret key in all nodes. Any pair of nodes can use this master
secret key to securely establish a new pairwise key. But if a single node is compromised, the security of the
key establishment is compromised. At the other extreme, one might consider a key pre-distribution scheme
in which each sensor stores N − 1 keys (where N is the number of nodes in the network), each of which
is known to only one other sensor node. If a subset of nodes is compromised, security properties of the
group of all other nodes are still guaranteed. Unfortunately, this scheme is impractical for groups with large
member number, since it requires extremely much memory. Moreover, this scheme does not easily allow
new nodes to be added to a sensor network because the existing nodes will not have the new nodes’ keys.

A number of key pre-distribution schemes to solve the above mentioned problem are proposed, some of
those can be found in [18, 31, 36, 101]. In scheme in [101], each sensor node receives a random subset
of keys from a large key pool before deployment. To agree on a key for communication, two nodes find a
common key (if any) within their subsets and use it as shared secret key. Now, the existence of a shared key
between a particular pair of nodes is not ensured but is instead probabilistically guaranteed (this probability
can be tuned by adjusting the parameters of the scheme).
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3.8.2. Key transport schemes

In key transport schemes, the group manager or key server generates secret keys and transports them to the
other participants. A prior shared key or PKI should be assumed so that the new generated keys could be
transported securely. The member that generates keys bears higher computation costs than others. A number
of schemes falling into this class have been designed, e.g., [12, 26, 54, 84, 85, 86, 88]. Some of these have
lead to implementations or standards, e.g., the Kerberos[68, 69], the ANSI X9.17 [1], and the KryptoKnight
[72] which rely on symmetric key technology, or the ISO-CCITT X.509 Directory Authentication scheme
[2], which use public key technology.

The Kerberos scheme may be summarized as follows: Kerberos is based on the Needham-Schroeder
protocol [84]. It makes use of a trusted third party, denoted a Key Distribution Center (KDC), which consists
of two logically separate parts: an Authentication Server (AS) and a Ticket Granting Server (TGS). Kerberos
works on the basis of ,,tickets“ which serve to prove the identity of users. Kerberos maintains a database
of secret keys. Each entity on the network, whether a client or a server, shares a secret key with Kerberos
server. Knowledge of this key serves to prove an entity’s identity. For example, when a client A needs a key
to communicate with a server B, A must obtain the desired key from the KDC prior to communication with
B. While in ANSI X9.17 A must contact B first, and let B get the necessary key from the KDC.

The KryptoKnight provides the same set of services as Kerberos. However, the authentication and key
distribution protocols used in KryptoKnight are minimal, flexible and scalable. They are suitable for various
network settings, such as small devices with limited computing power and low-level networking environ-
ments. Unlike Kerberos, KryptoKnight uses a hash function for authentication.

3.8.3. Group key agreement

In key agreement schemes every participant contributes somewhat that will be used to compute common
secret key. Schemes falling into this class can be further classified, according to the based technology:
symmetric key and asymmetric key cryptography. However, the

Key agreement schemes assume typically some sort of public-key infrastructure which are most not
present in ad hoc networks. The solution of this problem in ad hoc networks will be handled in TFAN
protocol suite in Section 5.

3.8.3.1. Group communication semantics and support

Without a reliable group communication platform, it is difficult to agree on the group key. Hence a se-
cure group key agreement protocol depends on the underlying group communication semantics for protocol
message transport and strong membership semantics.

Two strong group communication systems are mostly used: Extended Virtual Synchrony (EVS) [7, 73]
and View Synchrony (VS) [3] group communication system (GCS). Both provide the following services:

1. Group members see the same set of messages between two sequential group membership events;

2. The sender’s requested message order is preserved. VS provides a stricter service, while EVS imple-
mentations are generally more efficient.

The main difference between these two systems is how they maintain view changes. In an EVS group
communication system, view changes occur without clients’ involvement, while in a VS system a new view
can be installed only with the permission of the client. Due to the intervention of the client, it is impossible
to handle truly view changes in ,,real-life“. What it can do is to isolate a client from these changes and not
allow new members or their messages to be presented to the client without its permission.

In a VS group communication system, when an underlying view change occurs, due to join, leave, parti-
tion or merge (Section 3.8.3.2), group communication system creates a request message indicating that the
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current view is outdated and should be replaced with the new view. A member gives the group communi-
cation system the permission to install the new view. Till this moment, the member is still able to receive
messages from the survived members, but is not allowed to send any messages to the group.

In an EVS group communication system, when a membership change occurs the new view is delivered to
the members with the normal stream of messages.

Generally the EVS model is faster and more scalable with respect to view changes, especially for simple
group changes, e.g. join and leave. However, in EVS group communication systems, the member has less
control over what is taking place and therefore in general it is harder to program algorithms under EVS than
under VS. For example, in EVS group communication systems, until the message is delivered back to the
sender, the sender gains no information about which other members might receive its messages. Since the
view may change very frequently in EVS group communication systems, the algorithm must consider all
combinations of different view changes. However, in VS group communication systems, the member knows
exactly which other clients might receive its message upon sending it. Also, view changes only occur as fast
as the applications wants them to, although several underlying memberships may be collapsed into one. So
they are generally easier to handle and track.

Due to the above mentioned properties of EVS and VS group communication systems, an implementation
of any distributed fault-tolerant group key agreement protocol requires VS group communication systems.
This is because implementing group key agreement on top of EVS would require the key agreement protocol
to incorporate and implement semantics identical to those of VS in order to correctly keep the order of sent.

3.8.3.2. Group membership events

In a dynamic group, the group’s view changes over the time, sometimes very frequently. At some time some
want to form a group for some purpose. After the forming, some may join in the group and some members
may leave the group freely or due to some faults. A powerful group key agreement should consider this
dynamic behavior using the underlying group communication system.

In the following we distinguish these events, according to the phase when the events occur, between Setup
operation and Dynamic group operation.

Setup operation Setup operation takes place at the time of group formation. In this phase some agreed
protocol is used to form a group, namely, to setup the relationship among all members. There are a number
of protocols to identify on the architecture, e.g. [8, 41] for ad hoc networks. In group key agreement schemes
depending on key tree, the nodes can be sorted according to some criteria, and form a tree.

As mentioned in Section 3.8.3.1, group key agreement prepares secure group communication, and the
protocol overhead in this phase should be minimized as much as possible. Some security properties may
depend on the underlying group communication system.

Dynamic group operation Once a group is formed, it is ready to be used by other applications. How-
ever, in a dynamic group, the views of the underlying group communication system are dynamic. Hence
initial group key agreement is only one part. A comprehensive group key agreement scheme must also be
able to handle adjustments to group secrets subsequent to all membership change operations in the underly-
ing group communication system.

All member operations taking place in this phase can be further classified into two types, addition and
exclusion of members. Additive events include addition of single and multiple members, while exclusion
events include deletion of single and multiple members.

Another most commonly used classification is according to number of members. The operations are
distinguished between single and multiple member operations.

All operations are illustrated in Figure 3.9.
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Single member operations Simple member operations include the addition and deletion of single
member, denoted by join and leave respectively.

1. Join: Join occurs when a potential member wishes to join in an existing group for some reason, such
as to share document, to join a conference. The member addition is always performed multi-laterally
or, at least, mutually. Suppose that A wishes to join the group G. A sends its request to group G, after
the arbitration among the current members, G accepts or rejects A’s request.

2. Leave: Leave occurs when a member wishes to leave the group, or is forced to leave the group. In
the former case, member deletion is mutual, while in the later case unilateral. There may be various
reasons for a member to be forced to leave a group, such as involuntary disconnect or forced exclusion.
A group key agreement scheme does not need to bother about reasons. It leaves the underlying group
communication system to handle them. However, it must adjust the group key on this change.

Partition (subgroup) Merge (group)

Merge (multiple join)Partition (multiple leave)

Leave Join

Figure 3.9.: Dynamic group operations

Multiple member operations Multiple member operations are group addition and group exclusion
operations, denoted by group merge and group partition, respectively. The operations of single members
are the special cases of multiple member operations.

Group partition can be considered of having the following variants.

1. Single leave: It is the special case, the same as leave defined above.

2. Multiple leave: Multiple members leave the group without forming own subgroup.

3. Subgroup leave: All members leave the group and form own subgroup.

We consider multiple leave as group partition, when leaving and remaining members can be organized to
two subgroups, respectively. The single leave can be considered to be the leave of a subgroup with only one
member.
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After group partition, member’s group view is relative to the subgroup it belongs to. For example, there

is a group G consisting of 6 members M1, M2, M3, M4, M5, and M6. Now the group G is split into two
smaller groups: group G1 with members M1, M3, M5, and group G2 with members M2, M4, and M6. All
members in G1 see M2, M4, and M6 as leaving members, while all members in G2 see M1, M3, and M5 as
leaving members.

A group partition can take place for several reasons, summarized in the following [58]:

1. Network failure - occurs when a network event causes dis-connectivity within the group.
Consequently, a group is split into fragments some of which are singletons while others
(those that maintain mutual connectivity) are sub-groups.

2. Explicit (application-driven) partition - this occurs when the application decides to split
the group into multiple components or simply exclude multiple members at once.

Similarly, group merge has the following variants.

1. Single join: It is the special case, the same as join defined above.

2. Multiple join: Multiple potential members wish to join an existing group and, moreover, these po-
tential members do not already form a group of their own.

3. Group join: Another existing group wishes to merge into the current group to form a super-group.

It seems that multiple variants of group merge exist. However, we consider multiple join as group join, when
the potential members are formed first to a group and then this new group will be merged into the current
group. The join can be considered to be the merge of a group with only one member into the current group.

The merge of more than two groups can be considered to be subsequent merging of two groups. Unlike
in group partition, all members have the same view after group merge is handled.

As discussed above, due to some reasons a group is split into some smaller groups. Correspondingly, a
group merge can be either voluntary or involuntary [58]:

1. Network fault heal - occurs when a network event causes previously disconnected network
partition reconnect. Consequently, all groups (and there might be more than two groups)
formed after partition are merged into a single group.

2. Explicit (application-driven) merge - occurs when the application decides to merge mul-
tiple pre-existing groups into a single group. (The case of simultaneous multiple-member
addition is not covered.)

Due to the properties of ad hoc networks (Section 1), network failures and network fault heals are both
common and expected. Hence dealing with group partitions and merges is a crucial component of group key
agreement for ad hoc networks.

Group Key Refresh It is desirable to refresh the key periodically, even if the group memberships are
not changed. There are two main reasons, one is to limit exposure due to loss of group session keys, the
other is to limit the amount of ciphertext available to cryptanalysis for a given group session key. This
makes it important for the key refresh protocol not to violate key independence. Additionally, note that the
loss of a member’s key share can result in the disclosure of all the session keys to which the member has
contributed with this share. Therefore, not only session keys, but also the individual key shares must be
refreshed periodically.

3.8.3.3. Cryptographic Properties

One of the most critical security properties of group key agreement schemes is key freshness. That’s the
main purpose of the group operation key refresh (Section 3.8.3.2). Key freshness is defined as follows [58]:
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A key is fresh if it can be guaranteed to be new, as opposed to possibly an old key being reused
through actions of either an adversary or authorized party.

Furthermore, the keys should be independent, which is ensured by both Forward Secrecy and Backward
Secrecy. However, sometimes it is not desirable to provide key independence, but only some weaker form
of it, called Weak Key Independence, which requires Weak Forward Secrecy and Weak Backward
Secrecy.

One basic security property is that the key can only be known to the involved parties. According to above
discussed requirements, Kim et. al. define in [58, 56] the following four security properties of a group key
agreement.

Definition 3.1 Assume that a group key is changed m times and the sequence of successive group keys is
K = (K0,K1, · · · ,Km, · · · ).

1. Computational Group Key Secrecy: This is the most basic property. It guarantees that it is compu-
tationally infeasible for any passive adversary to discover any group key Ki ∈ K for all i.

2. Decisional Group Key Secrecy: It ensures that there is no information leakage other that public
blinded key informations.

3. Key Independence is the strongest property. It guarantees that a passive adversary who knows a
proper subset of group keys K̂ ⊂ K cannot discover any other group key from K̄ = K − K̂. Key
independence can be decomposed into the following two security properties.

a) Forward Secrecy5: It guarantees that a passive adversary who knows a contiguous subset of
old group keys, e.g. {Ki,Ki+1, · · · ,Kj}, cannot discover any subsequent group key Kk for all
i, j, k where 0 ≤ i ≤ j < k.

b) Backward Secrecy: It guarantees that a passive adversary who knows a contiguous subset of
group keys, e.g. {Kj ,Kj+1, · · · ,Kk}, cannot discover any preceding group key Ki for all i, j, k
where i < j ≤ k.

As mentioned in the beginning of this section, some group key agreement schemes use weak key inde-
pendence, which bases on the following two security properties [110]:

1. Weak Backward Secrecy: Previously used group keys must not be discovered by new group mem-
bers.

2. Weak Forward Secrecy: New keys must remain out of reach of former group members.

In Weak Key Independence the adversary is restricted to be a current or former group member, while
key independence additionally includes the cases of inadvertently leaked or otherwise compromised group
keys.

In certain cases, (Weak) Key Independence may be undesirable. For example a new member may be
allowed to know the former secret key to get access to the old information. Some group key agreement
schemes may allow to specify the security level based on the local security policy.

Secret keys, such as for encryption and for authentication, are derived commonly from the agreed group
key. If the deriving function is not one-way, an attacker may get one of the secret keys according to this
definition.

5Not to be mixed with Perfect Forward Secrecy (PFS). PFS is defined as follows: For a key-establishment protocol, the com-
promisation of a session key or long-term private key after a given session does not cause the compromisation of any earlier
session.
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3.8.3.4. Complexity Analysis

Above we have discussed the security properties of group key agreement schemes. Important is also their
complexity, namely performance costs. Sometimes trade-off between complexity and security is required, so
that the schemes are suitable to particular environments. Three of the most important criteria are computation
costs, communication costs, and memory space costs.

Computation costs To achieve exact computational costs is impossible and also impracticable. Dif-
ferent implementations of an identical group key agreement scheme bring different results. Even the same
implementation can not guarantee same result in different environments.

However, we can estimate the computation costs by identifying the expensive and time-critical opera-
tions. We can ignore the concrete operation time, and only compare the number of such operations. Some
computations can be pre-performed before protocol run or computed when the system is idle. Hence only
the operations which have to be performed sequentially should be considered. Those operations are denoted
by serial operations in [56].

Communication costs The communication costs of a group key agreement depends clearly on the
topology and properties of the network and the group communication system used. The critical aspects
are primarily latency and bandwidth. Additionally the communication costs are implementation-dependent.
Hence to achieve fixed communication costs is impracticable. However, we can estimate them by consider-
ing the following costs.

1. Number of rounds: this affects serial communication delay. As the number of rounds grows, the
communication delay and the probability of message loss or corruption are increased.

2. Total number of messages: as the number of messages grows, the probability of message loss or
corruption, and the delay are increased.

3. Number of broadcasts and unicasts: a broadcast operation is much more expensive than a uni-
cast one, since it requires much more acknowledgments with the group communication system. The
number of broadcasts should be minimized.

4. Length of message: It is critical in networks with limited bandwidth, such as ad hoc networks.

Memory costs In general network environments, devices are usually not limited in their memory space.
However in networks with limited memory such as ad hoc networks, memory costs are one of the most
crucial criteria. Memory costs are defined as the size of the the information required to perform the group
key agreement protocol. For simplicity, we measure memory costs with the number of keys and randoms in
the above mentioned information.
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Since the publication of two-party Diffie-Hellman (DH) key exchange in 1976, various solutions have been
proposed to extend Diffie-Hellman key exchange to multi-party key agreement, such as [8, 9, 14, 17, 46, 56,
57, 58, 107, 108, 109, 110, 111, 122, 124, 126].

Most notable and best known among those proposals are the protocols by Ingemarson et al. [46] (ITW),
Burmester and Desmedt [17] (BD), Becker and Wille [13] (2d-cube and 2d-octopus), Steiner et al. [108,
109, 111] (CLIQUES), and Kim et al. [57] (STR), [58] (TGDH).

The last three protocol suites, CLIQUES, STR and TGDH, are studied in this chapter. They are suitable
for dynamic peer groups (DPGs), since they provide protocols to setup the group, and to handle dynamic
group operations. Additionally, we improve STR and TGDH to save memory costs, message size, and
computation costs. All communication channels in these protocol suites are public but authentic. The latter
means that all messages are digitally signed by the sender using some sufficiently strong public key signature
method such as RSA or DSA. For sake of briefness, we does not consider such authentication in the rest of
this chapter for protocol suites CLIQUES, STR, TGDH, improved STR, and improved TGDH.

With respect to ad hoc networks, we introduce Asokan-Ginzboorg protocol, which is developed in [8].
Asokan-Ginzboorg bases on 2d-cube and 2d-octopus, and is extended with password authentication and
ability to deal with faulty events, so that it is suitable for static ad hoc networks.

The following abbreviations will be used in the tables which summarize the complexity characteristics.

Rounds: The total number of rounds
Exps/Mi

1: The total number of modular modular exponentiations computed
by member Mi

All Exps: Total number of modular exponentiations of all members
Serial 2 Exps: The serial number of modular exponentiations

Ucasts: The total number of unicast messages of all members
Bcasts: The total number of broadcast messages of all members

Ucast Size: The cumulative unicast message size
Bcast Size: The cumulative broadcast message size
Msg Size: The cumulative unicast and broadcast message size

Additionally, for description of protocol suites, the symbols in Figure 4.1 are used for all protocol suites
through this and next chapters. Additionally we define key-path and co-path for STR and TGDH. A key-path
of member Mi is defined to be the path from Mi to the root, and Mi’s co-path is the set of siblings of each
node in the key-path of member Mi. Figure 4.2 lists some symbols for protocol suites STR and TGDH.
Other specific symbols for each protocol suite can be found in the respective section.

The rest of this chapter is organized as follows: Section 4.1 describes Asokan-Ginzboorg and the basic
protocols 2d-cube and 2d-octopus. CLIQUES is introduced in Section 4.2. STR is studied in Section 4.3,
while TGDH in Section 4.4. The comparison of the complexity characteristics of above mentioned protocols
is in Section 4.5, according to the criteria described in Section 3.8.3.4.

1In protocols suites TGDH and µTGDH Mi is replaced by 〈l, v〉 which identifies a member’s position.
2The serial cost assumes parallelization within each protocol round and represents the greatest cost incurred by any participant in

a given protocol.
3n denotes the number of members in the initial group in operations join, leave and partition, and n means the members in the

group with highest key tree in case of merge.
4h denotes the height of the initial tree in operations join, leave and partition, and h means the height of highest tree in case of

merge.
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n number of protocol participants (group members) 3

i, j, c, s indices of group members
Mi ith group member; i ∈ {1, 2, · · · , n}.
M∗ all group members
G cyclic algebraic group
|G| order of G

g exponentiation base; generator of G
p, q large prime number

ri, r̂i secret values from Z|G|, randomly generated by Mi

KG group key shared among members in a group

Figure 4.1.: Notations

h height of the tree 4

ĥ height of the updated tree
Ti Ti’s view of the key tree
T̂i Mi’s modified tree after membership operation

KEY ∗
i set of keys (and session randoms in STR) in Mi’s key-path

BK∗
i set of M∗

i ’s blinded keys (and blinded session randoms in STR)
KpBK∗

i set of blinded keys (and blinded session randoms in STR) in
Mi’s key-path

CoBK∗
i set of blinded keys (and blinded session randoms in STR) in

Mi’s co-path

Figure 4.2.: Notations for STR and TGDH

4.1. Asokan-Ginzboorg Protocol Suite

Becker and Wille [13] have proposed the hypercube protocol suite, which shows how multi-party Diffie-
Hellman key exchange can be done efficiently. Two of them, 2d-cube and 2d-octopus are introduced in
Section 4.1.1. Asokan and Ginzborg [8] have extended them by

• adding the password authentication to authenticate the partner,

• suggesting an algorithm to find non-faulty partner to make the protocol suite fault-tolerant.

We call the extended protocol suite Asokan-Ginzboorg.
One of the major advantages of the protocols described in this section is the lower memory cost. Each

member needs only to know the agreed key, so the memory cost is only 1. However, both hypercube and
Asokan-Ginzboorg can only handle key agreement for static groups. It is not clear, how they can be extended
to deal with the dynamic group operations (Section 3.8.3.2).

Besides the symbols in Figure 4.1, KAB denotes the key shared among members A and B.

4.1.1. 2d-cube and 2d-octopus protocol suites

We consider here two protocols in hypecube protocol suite, 2d-cube and 2d-octopus. In 2d-cube protocol the
2d participants are arranged in a d-dimensional hypercube, denoted d-cube. The participants are identified
with the vectors of the d-dimensional vector space F2d .

We take a 2-cube as example, the protocol process is shown in Figure 4.3. There are four participants, A,
B, C, and D with 2-bit addresses 00, 01, 10, and 11, respectively. Two rounds are needed to share a secret
among them. In the first round, A and B perform a two-party DH key exchange and compute then the secret
KAB = gr

A
r
B . C and D do the same and get the secret KCD = gr

C
r
D . In next round, A and C perform a
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two-party DH key exchange, they use the secret key gained in the previous round, namely KAB and KCD,
respectively. Now A and C know the shared secret group key K = gKABKCD = g(g(r

A
r
B

)g(r
C

r
D

)). The
same do B and D. After two rounds, all four participants have the same key KG = g(g(r
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Figure 4.3.: Key exchange’s process of d-cube (d = 2)

Assume that there are n = 2d participants. Each participant is identified with a d-bit address with decimal
value from 0 to 2d − 1. The protocol proceeds in d rounds. In round j, the participant with address A runs
a two-party DH key exchange with the node with address A ⊕ 2j−1. In other words, in round j, two
nodes whose addresses are only different at the (j − 1)th least significant bit perform the two-party DH key
exchange. After j rounds, the nodes who have the identical n− d greatest significant bits of addresses have
the same key, and there are 2d−j key pairs. After d rounds all participants have the same key.

The above described protocol works only when the number of participants is a power of 2. For generalized
case, a so called 2d-octopus protocol is introduced in the same article of Becker and Wille. All n (2d <
n < 2d+1) participants are identified with d + 1 bits addresses with decimal value from 0 to n− 1. The first
2d participants play the role of central controllers. The rest n − 2d participants are distributed among the
central controllers as their wards. A participant with address A > 2d is the ward of central controller with
address A− 2d.

In the first phase, the central controllers perform two-party DH key exchange with their wards. The
controllers engage then in a d-cube protocol run using the information gathered in the first phase. In the
third and last phase, the key gained in the second phase is distributed to the wards encrypted with the key
gained in the first phase as follows. One possibility is using ElGamal Encryption. Assume that the controller
and its ward have agreed in the first phase KAB and the public value PK = gKAB , and the group key to
be distributed is KG. The controller chooses randomly an element t from G, computes then C1 = gt and
C2 = KG · (gKAB )t, and finally sends C1 and C2 to the ward. The ward gets then the group key by dividing
C2 by (C1)KAB . More efficient is to use symmetric encryption using the KAB derived symmetric key.

An example is given below. Suppose 7 participants P0, P1, · · · , P6, with 3-addresses 000, 001, · · · , 110,
respectively, wish to agree on a secret with hypercube protocol. P0, P1, P2, and P3 are central controllers.
The first three have their wards P4, P5, and P6, respectively. In the first phase, P0 and P4, P1 and P5, and
P2 and P6 execute two-party DH key exchange, P3 do nothing. In the second phase, P0, P1, P2, and P3 run
d-cube protocol to share a secret K. Finally K will be distributed by P0 to P4, by P1 to P5, and by P2 to
P6. The process is illustrated in Figure 4.4.

The complexity characteristics of protocols 2d-cube and 2d-octopus are summarized in Table 4.1.

4.1.2. Asokan-Ginzboorg protocol suite

In 2d-cube and 2d-octopus no authentication of the participants are performed. One solution is to use digital
signatures. This requires, in order, the existence of PKI. However, in some networks e.g. ad hoc networks, no

5The data here are for the case using ElGamal encryption to distribute the group key by central members to their respective wards.
Each central controller needs to compute two modular exponentiations. And each ward one for the decryption. However, by
using symmetric encryption, the computation costs of encryption can be neglected.
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Figure 4.4.: Key exchange’s process of 2d octopus (d = 2, n = 7)

such infrastructure can be assumed. One solution for group key agreement for such networks was proposed
by Asokan and Ginzboorg [8]. The four move two-party Diffie-Hellman key exchange (Section 3.7.3) can
be applied instead of each two-party DH key exchange in 2d-cube and 2d-octopus.

Due to network faults, a participant may discover during any round that the key exchange with its chosen
partner failed. No mechanisms of 2d-cube and 2d-octopus can handle such failures. This problem is solved
in the extended version, Asokan-Ginzboorg. It works well even if there are such failures. If a participant
discovers that its chosen partner in a given round is faulty, it select other potential partners until a non-faulty
one is found. This algorithm suggests the ,,closer“ partners before the more distant ones, in term of the
euclidean distance between the participants’ addresses.

The process finding such a partner is described in algorithm 4.1. For more information please refer to [8].

Algorithm 4.1 (Finding a non-faulty partner in hypercube protocol)
Input: Participant A’s address I , round number n.

Output: Success and B if a non-faulty partner B of A at round n exists, else failure.

1. Let mask = 00 · · · 01;

2. mask = mask << (n− 1);

3. B = I ⊕mask;

4. mask = mask >> 1;

5. Call sub-algorithm two pary dhke with B and mask as input. Return the result of this call.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The sub-algorithm two pary dhke to find a partner and perform two-party DH key exchange is described
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2d-cube 2d-octopus (n 6= 2d)

Rounds d d + 2
Ucasts nd 3(n− 2d) + 2d · d
Bcasts 0 0

Exps/Mi 2d− 1 2d + 3 for central controllers
2 for wards 5

Ucast size nd 3(n− 2d) + 2d · d
Bcast size 0 0
All Exps n(2d− 1) 2d · (2d + 1)

Serial Exps 2d− 1 2d + 3 5

Remark: n:number of members, d = blog2 nc

Table 4.1.: Complexity of protocol 2d-cube and 2d-octopus

below:
algorithm two party dhke(candidate, mask)

1. if mask > 0, go to next step; otherwise attempt running the 2-party DH key exchange, return the
result (success with candidate, or failure);

2. new mask = mask >> 1;

3. result = two party dhke(candidate, new mask);

4. if result = success, return sucess and candidate; otherwise go to next step;

5. new candidate = candidate⊕mask;

6. return two party dhke(new candidate, new mask).

Unlike the basic hypercube protocols, the number of all sub-rounds will be measured for communication
cost. When the number of participants n is not a power of 2, 2d < n < 2d+1, the protocol using algorithm
4.1 consumes d + 1 rounds. The number of sub-rounds can be at most 2d, when n = 2d + 1. However, by
labeling the participants differently the complexity can be significantly reduced. Suppose, there are m faulty
or missing participants, the even numbers from 0 to 2(m−1) are associated with the faulty or missing ones.
The rest of addresses are assigned in sequence to the remaining actual participants. So that each remaining
actual participant can find a non-fault partner to process the two-party DH key exchange with maximal two
attempts. With this relabeling technique, the worst case complexity is 2(d + 1) rounds. And the costs for
relabeling the participants should also be considered.

In the following, we consider a scenario described in [8] without relabeling the participants. There are n
participants, where 2d < n ≤ 2d+1, and m of those are faulty, where 2k ≤ m < 2k+1. We assume further
that 2k− 1 of those faulty participants are in a k-cube C1, and the rest faulty ones are in another k-cube C2.
C1 and C2 will process in round k + 1 key exchange.

Then the number of sub-rounds in main round i with 1 ≤ i ≤ k + 1 is at most 2i−1. In round k + 1,
the number of faulty participants in cube C1 is 2k − 1. Some participant in cube C2 may try all the faulty
players in C1 before finding the only non-faulty participant. Thus the maximum number of sub-round for
main round k +1 is k. In round i with 1 ≤ i < k, the only non-faulty participant will have to try all possible
partners before giving up.

From main round k + 2 to d + 1, the maximal sub-rounds is m + 1. This is because in each of those
rounds, there is always one sub-cube with m faulty participants. The same non-faulty participant may select
each of the m faulty participants in sequence before being able to complete its round exchange, resulting in
m + 1 rounds.
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So at most

∑k+1
i=1 2i−1 + (d − k)(m + 1) = 2k+1 − 1 + (d − k)(m + 1) rounds are needed. This

is also the upper bound, regardless of the positions of the m faulty participants. Correspondingly at most
2k+1 − 1 + (d − k)(m + 1) unicast messages are needed for the non-faulty participants. The n − m
participants are non-faulty. So at most (n − m)(2k+1 − 1 + (d − k)(m + 1)) unicast messages will be
sent during the key agreement. Every non-faulty participant will process d + 1 successful key exchange,
and at most 2k+1 + (d − k)(m + 1) − d − 2 failing key exchanges. Assume that exponentiation will be
only computed in a successful DH key exchange, then d exponentiations are computed by each non-faulty
participant. In worst case, in each main round, there are at most max(n - m, number of sub-rounds) serial
exponentiations. The total number of serial exponentiations can be computed as follows:

min(n−m,
k+1∑
i=1

max(n−m, 2i−1) + (d− k) ·max(n−m,m + 1)).

The worst case complexity characteristics are summarized in Table 4.2.

rounds 2k+1 − 1 + (d− k)(m + 1)
UCast MSGs (n−m)(2k+1 − 1 + (d− k)(m + 1))
BCast MSGs 0
EXP/member 2d + 1∑

UCast (n−m)(2k+1 − 1 + (d− k)(m + 1))∑
BCast 0∑

EXP (n−m)(2d− 1)
Serial EXPs min(n−m,∑k+1

i=1 max(n-m, 2i−1) + (d-k)·max(n-m, m+1))
Remark: n: number of members, m: number of faulty members, 2d < n ≤ 2d+1,
2k ≤ m < 2k+1

Table 4.2.: Complexity of Asokan-Ginzboorg (worst case)

4.2. Cliques Protocol Suite

In [109, 108, 111] Steiner et al. present CLIQUES, a complete family of protocols for key agreement in dy-
namic peer groups (DPGs). This protocol suite considers initial key agreement, key refresh and membership
changes (Section 3.8.3.2). The protocol suite uses Diffie-Hellman key exchange technique.

Since there are various versions of CLIQUES, for sake of clarity, the protocol CLIQUES introduced
below is from [111]. We present only the computation process of the group key. For the security proof and
other issues please refer to [111].

Assume that we have a group of n members. Each member Mc must know (g
Q

(rm|m∈{1,··· ,n}\{j})|j ∈
{1, · · · , n} \ {c}), g

Q
(rm|m∈{1,··· ,n}\{c}), and

g
Q

(rm|m∈{1,··· ,n}). Additionally it must know its own random rc and the group key. So the memory costs of
each member are 2 keys and n + 1 public keys.

4.2.1. IKA protocol

CLIQUES uses two alternative IKA protocols IKA.1/GDH.2 and IKA.2/GDH.3 [111]. Compared to IKA.1,
IKA.2 is optimized for large groups or groups having limited resources entities. In IKA.1 the member Mi

needs to compute i+1 exponentiations. However, in IKA.2, the number of exponentiations are significantly
reduced, 4 for Mi with i ≤ n − 2, 2 for Mn−1, and n for Mn. Hence we have only interest in IKA.2, for
information about IKA.1 please refer to [111]. The process of IKA.2 is illustrated in Protocol 4.1.
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Protocol 4.1 (CLIQUES IKA.2)
1. Round i, i ∈ {1, · · · , n− 2}:

Mi g
Q

(rm|m∈{1,··· ,i})
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Mi+1

2. Round n - 1:
M∗ g

Q
(rm|m∈{1,··· ,n−1})

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Mn−1

3. Round n:
Mi g

Q
(rm|m∈{1,··· ,n−1})

ri

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Mn

4. Round n + 1:

M∗ g

Q
(rm|m∈{1,··· ,n})

rj |j ∈ {1, · · · , n})
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Mn

5. Every member computes the group key.

After running IKA.2 protocol, a secret key KG = g
Qn

i=1 ri is shared among the group. Some examples
for IKA.2 and the below mentioned protocols are given in chapter 7 in [108]. For the sake of clarity, we
refer reader to [108] for such examples. The complexity characteristics of IKA.2 protocol is given in Table
4.3.

Rounds n + 1
Ucasts 2n− 3
Bcasts 2

Ucast size 2n− 3
Bcast size n + 1
EXPs/Mi 3 for i ∈ {1, · · · , n− 2},

2 for i = n− 1, n for i = n
All Exps 5n− 6

Serial Exps 2n + 1

Table 4.3.: Complexity of CLIQUES IKA.2 protocol

4.2.2. Join protocol

To handle a join event, a group controller is needed. It can be any member in the group. The group
controller has usually higher performance capability than other members. Let Mc be the group controller,
and let Mn+1 be the potential member. The protocol is illustrated in Protocol 4.2.

In first step, Mc chooses a new random exponent r̂c. Then rc is replaced by r̂crc mod |G| to achieve key
independence. The message will be sent by Mc to the new member Mn+1. Mn+1 generates randomly its
secret rn+1 and embeds rn+1 in the message which it then broadcasts to all members in group.

Protocol 4.2 (CLIQUES join)

1. Round 1: The group controller Mc

• updates its secret to be embedded in the new message,
• unicasts this message to Mn+1.

Mc Mn+1
(g brc

Q
(rm|m∈{1,··· ,n}\{j})|j ∈ {1, · · · , n}),

g brc
Q

(rm|m∈{1,··· ,n}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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2. Round 2: The new member Mn+1

• generates a secret rn+1,
• embeds rn+1 in a new message,
• broadcasts the message.

M∗ (g brc
Q

(rm|m∈{1,··· ,n+1}\{j})|j ∈ {1, · · · , n + 1})
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Mn+1

3. Every member computes the group key.

After running join protocol, all members compute the new group key: KGnew = g brc
Qn+1

i=1 ri . The com-
plexity characteristics of join protocol is given in Table 4.4.

Rounds 2
Ucasts 1
Bcasts 1

Ucast size n + 1
Bcast size n + 1
Exps/Mi n + 1 for group controller and new member,

1 for all others
All Exps 3n + 1

Serial Exps 2n + 1

Table 4.4.: Complexity of CLIQUES join protocol

4.2.3. Leave protocol

The leave protocol in CLIQUES is relatively simple. It needs only one round. Let Mc be group controller,
and Ml be the member which leaves the group. First, Mc updates its secret rc with r̂crc. Mc constructs then
a broadcast message by embedding its new secret. Finally Mc broadcasts the message to the group. The
process is illustrated in Protocol 4.3.

Protocol 4.3 (CLIQUES leave)

1. Round 1: The group controller Mc

• updates its secret,
• embeds the new secret in a new message,
• broadcasts the message.

Mc M∗
(g brc

Q
(rm|m∈{1,··· ,n}\{j})|j ∈ {1, · · · , n} \ {c, l}),

g
Q

(rm|m∈{1,··· ,n}\{c})
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2. Every member computes the group key.

After running leave protocol, all remaining members compute the new group key: KGnew = g brc
Qn

i=1 ri .
Although the contribution rl is still factored into the new group key, the left member Ml is unable to compute
the new group key, due to the absence of the subkey g brc

Q
(rm|m∈{1,··· ,n}\{l}).

The complexity characteristics of leave protocol is given in Table 4.5.
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Rounds 1
Ucasts 0
Bcast 1

Ucast size 0
Bcast size n− 1
Exps/Mi n− 1 for group controller,

1 for all other remaining members
All Exps 2n− 3

Serial Exps n− 1

Table 4.5.: Complexity of CLIQUES leave protocol

4.2.4. Merge/Multiple join protocol

Strictly said, no merge protocol is defined in CLIQUES. Two solutions to merge two groups are suggested.
The first considers a special case of multiple joins, i.e. members of a smaller group are considered as new
members joining the larger group. The seconds creates a new super group via a fresh IKA (see Section 4.2.1.

Given a group of n members. k individual new members want to join the group. First, they are labeled
from Mn+1 to Mn+k. The rest is illustrated in Protocol 4.4. The first round is identical to the one in join
protocol.

Protocol 4.4 (CLIQUES merge/multiple join)

1. Round 1: The group controller Mc

• updates its secret,
• embeds the secret in a new message,
• unicasts the message to Mn+1.

Mc Mn+1

(g brc
Q

(rm|m∈{1,··· ,n}\{j})|j ∈ {1, · · · , n}),
g brc

Q
(rm|m∈{1,··· ,n})

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
2. Round 2 to k: In round i with 2 ≤ i ≤ k, member Mn+i−1

• embeds its secret in a new message,
• unicasts the message to member Mn+i

Mn+i−1 Mn+i

(g brc
Q

(rm|m∈{1,··· ,n+i−1}\{j})|j ∈ {1, · · · , n + i− 1}),
g brc

Q
(rm|m∈{1,··· ,n+i−1}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
3. Round k + 1: Member Mn+k

• embeds its secret in a new message,
• broadcasts the message.

M∗ (g brc
Q

(rm|m∈{1,··· ,n+k}\{j})|j ∈ {1, · · · , n + k})
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Mn+k

4. Every member computes the group key.

After running merge/multiple join protocol, all members are able to compute the new group key: KGnew =
g brc

Qn+k
i=1 ri .

The complexity characteristics of merge/multiple join protocol is given in Table 4.6.
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Rounds k + 1
Ucasts k
Bcasts 1

Ucast size k2+2nk+k
2

Bcast size k + n
Exps/Mi n + 2 for group controller,

1 for i ∈ {1, · · · , n} \ {c}
i + 1 for i ∈ {n + 1, · · · , n + k}.

All Exps k2+2nk+3k+4n+2
2

Serial Exps k2+2nk+k+2n
2

Remark: k: number of new members

Table 4.6.: Complexity of CLIQUES merge/multiple join protocol

4.2.5. Partition protocol

The partition protocol is similar to the leave protocol. The only difference is, the group controller needs to
compute fewer sub-keys. Let L denote the set of all members who leave the group, the process is illustrated
in Protocol 4.5.

Protocol 4.5 (CLIQUES partition)

1. Round 1: The group controller Mc

• updates its secret,
• embeds the secret in a new message,
• broadcasts the message.

Mc (g brc
Q

(rm|m∈{1,··· ,n}\{j})|j ∈ {1, · · · , n} \ L)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Every member computes the group key.

After run of the complete partition protocol, all remaining members are able to compute the new group
key KGnew = g brc

Qn
i=1 ri .

For the case that a group is split into more smaller groups. We can simply consider that all members
which belong to other smaller groups leave the group. Each smaller groups proceed independently.

For example, a group with members M1, M2, · · · , M6 is split into groups G1 with M1, M3, and M5, and
G2 with M2, M4, and M6. In group G1, M3 is chosen as group controller, while M4 is the group controller
of group G2. Supposed the new generated secrets are r̂3 and r̂4, respectively. Then the sponsor’s broadcast
message in group G1 is

(gr2(r3 br3)r4r5r6 , gr1r2(r3 br3)r4r6 , gr1r2 br3r4r5r6),

and in group G2 is
(gr1r3(r4 br4)r5r6 , gr1r2r3(r4 br4)r5 , gr1r2r3 br4r5r6).

The new group key for group G1 is

KG1new = gr1r2(r3 br3)r4r5r6 ,

while the one for group G2 is
KG2new = gr1r2r3(r4 br4)r5r6 .

The complexity characteristics of partition protocol is given in Table 4.7.
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Rounds 1
Ucasts 0
Bcast 1

Ucast size 0
Bcast size n− p
Exps/Mi n− p for group controller,

1 for all other remaining members
All Exps 2n− 2p− 1

Serial Exps n− p

Remark: p: number of leaving members

Table 4.7.: Complexity of CLIQUES partition protocol

4.2.6. Refresh protocol

The member Mr which is the least recent to have refreshed its key share generates a new share r̂r and
broadcasts the updated information, as described in Protocol 4.6.

Protocol 4.6 (CLIQUES refresh)

1. Round 1: The refresher Mr

• updates its secret,
• embeds the secret in a new message,
• broadcasts the message.

Mr (g brr
Q

(rm|m∈{1,··· ,n}\{j})|j ∈ {1, · · · , n})
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Every member computes the group key.

After running the refresh protocol, each member compute the new group key KGnew = g brr
Q

(rm|m∈{1,··· ,n}).
The complexity characteristics of refresh protocol is given in Table 4.8.

Rounds 1
Ucasts 0
Bcasts 1

Ucast size 0
Bcast size n
Exps/Mi n for refresher,

1 for all other members
All Exps 2n− 1

Serial Exps n

Table 4.8.: Complexity of CLIQUES refresh protocol

4.3. STR Protocol Suite

STR, suggested by Kim et al. [57], bases on a protocol suggested by Steer et al. in 1988 [107], and extends
this protocol to support dynamic group operations (Section 3.8.3.2). Since STR is optimized against the
communication delay, it is particularly efficient for group key agreement in networks where high network
delays dominate.
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For sake of clarity the blinded keys and blinded session randoms are denoted blinded values. Besides the

notations in Figure 4.1 and 4.2, the following notations will be used for STR.
bri Mi’s public blinded session random, i.e. gri mod p
ki secret key shared among M1 · · ·Mi

bki public blinded ki, i.e. gki mod p.
Ni Tree node i

INi Internal tree node at level i
LNi Leaf node associated with member Mi

BR∗
i Set of M∗

i ’s blinded session randoms

STR uses a key tree to manage the key group. The tree has two types of nodes, namely leaf and internal
nodes. Each specific group member Mi is associated with a leaf node LNi, while an internal node INi

has two children: the left child INi−1, and the right child LNi. Each leaf node LNi generates randomly a
session random ri which should be kept secretly, and computes the corresponding blinded session random
bri = gri . An internal node INi has a secret key ki and the corresponding public blinded key bki = gki .
The difference is that ki is not randomly chosen, but the result of a two-party DH key exchange between its
two children:

ki = (bki−1)ri = (bri)ki−1 ≡ gki−1ri mod p, i > 1. (4.1)

The internal node with the greatest index is considered to be the root. The secret key of the root is the shared
group key. For a group of n members, the root is INn, and the group key kn can be recursively computed
using Equation 4.1.

If n = 4, its group key is

KG = k4 = g(r4g(r3g(r2r1))).

k2, bk2

rn−1, brn−1

kn−1, bkn−1 rn, brn

kn

r2, br2r1/k1, br1/bk1

INn

INn−1

IN2

IN1

LN1/M1 LN2/M2

LNn−1/Mn−1

LNn/Mn

...

Figure 4.5.: STR tree

Looking at the STR key tree with n members in Figure 4.5, the member Mc, 1 ≤ i ≤ n, must know its
own session random, all blinded keys and blinded session randoms, and keys of the path from its parent node
to root node. More formally, it must store rc, bri, bki for i = 1, · · · , n (br1 = bk1), and ki for i = c, · · · , n.
So the memory costs of Mc are n− c + 2 keys for c ≥ 2 and n keys for c = 1, and 2n− 2 public keys for
all members. The meanings of some symbols are listed in the following:

h n− 1
KEY ∗

3 r3, k3, · · · , kn

BK∗
3 bk1, · · · , bkn−1

BR∗
3 br1, · · · , brn

KpBK∗
3 br3, bk3, · · · , bkn−1

CoBK∗
3 bk2, br4, · · · , brn

The rest of this section describes how STR deals with the group operations (Section 3.8.3.2). Some pro-
tocols can be further optimized for ad hoc networks, e.g. setup protocol, join protocol, and merge protocol.
The optimization can be found in Section 5.2.
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4.3.1. Setup protocol

The members who want to form a group can be ordered according to some criteria. The structure of the key
tree can be then derived from this order. Suppose each member i, namely leaf node LNi is equipped with ri

and bri. The process is illustrated in Protocol 4.7.

Protocol 4.7 (STR setup)

1. Round 1:
Each Mi, i ∈ {1, · · · , n} broadcasts its blinded session random:
Mi bri−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M∗

2. Round 2:
The member M1

• computes recursively ki = (bri)ki−1 and bki = gki , ∀i ∈ {2, 3, · · · , n−1} and kn = (brn)kn−1 ,

• broadcasts the updated tree with all blinded keys.
M1 T̂1(BK∗

1 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

3. Each member Mi, i ≥ 2, computes ki = (bki−1)rj and then recursively kj = (brj)kj−1 ,∀j ∈ [i +
1, n].

The complexity characteristics of setup protocol are summarized in Table 4.9.

Rounds 2
Ucasts 0
Bcasts n + 1

Exps/Mi 2n− 1 for i = 1,
n− i + 1 for 2 ≤ i ≤ n,

Ucast size 0
Bcast size 2n− 1
All Exps n2+3n−2

2
Serial Exps 3n− 2

Table 4.9.: Complexity of STR setup protocol

4.3.2. Join protocol

The current group has n members, the new member is identified with Mn+1. The tree will be updated by
incrementing n = n + 1 and adding a new internal node INn with two children: the root node INn−1 of
the prior tree Ti on the left and the new leaf node LNn on the right. This node becomes the new root node.
Figure 4.6 gives an example of addition of a new member to a group with four members.

For simplicity, we use n in the following to denote the number of group members before operation join.
To deal with the join operation, the member Mn is chosen as the sponsor. The new member Mn+1

broadcasts a join request containing its own blinded key bkn+1. All members Mi with 1 ≤ i ≤ n can
compute the new group key. The sponsor unicasts all blinded keys to Mn+1. Equipped with this message
the new member can also compute the new group key.

However this join protocol does not provide key independence since knowledge of a previous group key
can be used to compute the new group key. To remedy the situation, [57] suggests that the sponsor updates
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k2, bk2

r4, br4

k4

r2, br2
r1/k1,
br1/bk1

IN4

IN2

IN1

LN1/M1 LN2/M2

LN4/M4

r3, br3

k3, bk3

IN3

LN3/M3

r5, br5

M5

+

k2, bk2

r4, br4

k4, bk4

r2, br2
r1/k1,
br1/bk1

IN4

IN2

IN1

LN1/M1 LN2/M2

LN4/M4

r3, br3

k3, bk3
IN3

LN3/M3

r5, br5

LN5/M5

k5

IN5

Key tree before the addition of M5 Key tree after the addition of M5

Sponsor

Sponsor

Figure 4.6.: An example of STR join

its session random. The changed information will then be broadcasted to all members. The process is
illustrated in Protocol 4.8.

Protocol 4.8 (STR join)

1. Round 1:
The new member broadcasts its own blinded session random brn+1.
Mn+1 brn+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

The sponsor Ms(s = n)

• updates its session random rs and brs,
• computes new kn, bkn,
• broadcasts the updated tree with all blinded keys and blinded session randoms.

Mn T̂n(BK∗
n ∪BR∗

n \ {brn+1})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Every member Mi

• updates the tree by inserting Mn+1,
• sets n = n + 1,
• computes the keys:

– if i = 1, · · · , n− 2, computes kj = br
kj−1

j for j = n− 1, n,
– if i = n (new member), computes kn = bkrn

n−1.
– if i = s (sponsor), computes kn = br

kn−1
n .

The complexity characteristics of join protocol is given in Table 4.10.

4.3.3. Leave protocol

Like in CLIQUES, the leave protocol in STR is relatively simple, only one round is needed. Suppose we
have a group of n members and the member Ml with 1 ≤ l ≤ n leaves the group. Again we need a sponsor
Ms to update its session random. If l > 1, the sponsor is the leaf node directly below the leaving member,
i.e. Ml−1, otherwise the sponsor is M2. Since the tree will be updated and renumbered (see below), if M1

leaves the group, the sponsor is also M1 after renumbering.
After notification of the leave event from the group communication system, each remaining member

updates the key tree by deleting the nodes LNl and INl, and then renumbers the nodes above Ml.
The process is illustrated in Protocol 4.9.
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Rounds 2
Ucasts 0
Bcasts 2

Exps/Mi 4 for sponsor,
1 for new member,
2 for all others

Ucast size 0
Bcast size 2n
All Exps 2n + 3

Serial Exps 6

Table 4.10.: Complexity of STR join protocol

Protocol 4.9 (STR leave)

1. Round 1:
Every member

• updates the tree by removing the leaving member Ml,
• sets n = n− 1.

The sponsor Ms additionally

• updates its session random rs and brs,
• computes kn and ki and bki, ∀i ∈ [max(2, s), n− 1],
• broadcasts the updated tree with all blinded keys and brs.

Ms T̂s(BK∗
s ∪ {brs})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Every member Mi,

• if i < s, computes kj = br
kj−1

j , ∀j ∈ [s, n].
• if i > s, computes ki = bk

rj

i−1, and then recursively kj = br
kj−1

j , ∀j ∈ [i + 1, n].

Figure 4.7 gives an example of the exclusion of a member from a group of four members.

k2, bk2

r4, br4

k4

r2, br2
r1/k1,
br1/bk1

IN4

IN2

IN1

LN1
LN2/M2

LN4/M4

r3, br3

k3, bk3

IN3

LN3/M3

k2, bk2

r2, br2
r1/k1,
br1/bk1

IN2

IN1

LN1/M1 LN2/M2

r3, br3

k3

IN3

LN3/M3(M4)

Sponsor

Key tree before the exclusion of M3 Key tree after the exclusion of M3

(Name of node in brackets is that
in initial tree)

Figure 4.7.: An example of STR leave

The complexity characteristics of leave protocol is given in Table 4.11.
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s = 1 s ≥ 2

Rounds 1 1
Ucasts 0 0
Bcasts 1 1

Exps/Mi 2n− 4 for sponsor 2(n− s) for sponsor
n− i for member members n− i for Mi with i > s

n− s for Mi with i < s
Ucast size 0 0
Bcast size n− 2 n− 1
All Exps n2+n−6

2
n2+n−s−s2

2
Serial Exps 3(n− 2) 3(n− s)
Remark: LNs: sponsor in updated tree

Table 4.11.: Complexity of STR leave protocol

4.3.4. Merge protocol

In CLIQUES, no actual merge protocol is present due to the difficulty to deal with it. The key tree allows
relatively simple merge of two groups. The merge protocol covers also the multiple join.

The smaller group is merged onto the larger one, i.e. to place a smaller key tree directly on top of the
larger one. If group sizes are equal, we can order them according to some other criteria. A new intermediate
node N with two children is created. The root of the larger tree becomes the left child of N , while the
lowest-numbered leaf of the smaller trees the right child of N . The root of smaller tree becomes the root of
the new tree.

We need a sponsor for each group, The same as in join protocol, the topmost leaf node is selected as
sponsor. Both sponsors exchange key their respective key trees containing all blinded keys in the first round,
the sponsor of the larger key tree becomes then the new sponsor in round 2. The new sponsor updates first
its session random, and then computes all (key, blinded key) pair up to the new root node. It then broadcasts
the new tree with all blinded keys and blinded session randoms.

Figure 4.8 gives an example of the merge of two groups, with 3 and 2 members respectively.
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r3, br3

k3

IN3

LN3/M3

+
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k4, bk4
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IN4
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LN1/M1 LN2/M2

LN4/M4(M2
1 )

r3, br3

k3, bk3

IN3

LN3/M3

r5, br5
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IN5
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r1/k1,
br1/bk1

IN1

LN1/M2
1

New interme-
diate node

Sponsors
in round 1

Sponsor in
round 2

Figure 4.8.: An example of STR merge

Assume we have two trees, the larger one T 1 with n1 members, and the less one T 2 with n2 members.
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The sponsors of both trees are denoted by Ms1 and Ms2 respectively. The process to merge two groups is
illustrated in Protocol 4.10.

Protocol 4.10 (STR 2-group merge)

1. Round 1:
Both sponsors Ms1 and Ms2 exchange T 1 and T 2 with all blinded keys and blinded session randoms
respectively.
Ms1 T 1(BK∗

s1
∪BR∗

s1
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Ms2

Ms2 T 2(BK∗
s2
∪BR∗

s2
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Ms1

2. Round 2: The sponsor Ms (formerly Ms1)

• updates its session random,
• computes (ki, bki), i = n1 − 1, · · · , n1 + n2 − 1, and kn1+n2 ,
• broadcasts the updated tree with all blinded keys.

Ms T̂s(BK∗
s ∪BR∗

s)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. Every member Mi,

• if i < s, computes kj = br
kj−1

j , ∀j ∈ [s, n],
• if i > s, computes ki = (bki−1)ri , and then recursively kj = br

kj−1

j , ∀j ∈ [i + 1, n].

The complexity characteristics of the 2-group merge protocol are summarized in Table 4.12.

Rounds 2
Ucasts 2
Bcasts 1

Exps/Mi 2k + 2 for Mn

k + 1 for Mi, i < n
n− i + 1 for others Mi

Ucast size 2(n + k − 2)
Bcast size 2(n + k − 1)
All Exps k(2n+k+3)

2 + n + 1
Serial Exps 3k + 3
Remark: k: number of members in smaller group

Table 4.12.: Complexity of STR 2-group merge protocol

The merge protocol can be generalized to merge more than two groups. Suppose we have k groups. All
k groups are ordered from the largest to the smallest groups T 1 to T k with n1 to nk members, respectively.
The topmost leaf node of each key tree T i is chosen as the sponsor, denoted by Msi .

Two of the variants are discussed in following. One is the consequent 2-group merge. In this method the
first two groups perform a 2-group merge and as result is a updated tree T̂M . Group of T̂M performs then
a 2-group merge with the third group, and so on, until all groups are merged. The major advantage of this
method is that it can call 2-group merge as sub-protocol. However, new group is formed first after 2(k − 1)
rounds.

Another is m-group merge. Its process is described in Protocol 4.11. Ms1 becomes in round 2 the
new sponsor and is denoted Ms. Unlike 2-group merge, the trees are not unicasted between sponsors, but
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broadcasted. The reason is that m(m−1) messages are needed to exchange key tree among m groups using
unicast.

Protocol 4.11 (STR m-group merge)

1. Round 1:
Every sponsor Msi broadcasts its key tree with all blinded keys. For i with 1 ≤ i ≤ m:
Msi T i

si
(BKsi ∪BRsi)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Round 2: Every member

• updates the tree by merging all trees,
• sets n =

∑m
i=1 ni.

The sponsor Ms (formerly Ms1) additionally

• updates its session random,
• computes kn and (ki, bki), ∀i ∈ [n1, n− 1],
• broadcasts the updated tree with all blinded keys.

Ms T̂s(BK∗
s )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. Every member Mi,

• if i < s, computes kj = br
kj−1

j , ∀j ∈ [s, n],

• if i > s, computes ki = (bki−1)ri , and then recursively kj = br
kj−1

j , ∀j ∈ [i + 1, n].

Rounds 2
Ucasts 0
Bcasts m + 1

Exps/Mi 2k + 2 for Mn

k + 1 for Mi, i < n
n + k + 1− i for others Mi

Ucast size 0
Bcast size 4(n + k)− 2m− 1
All Exps k(2n+k+3)

2 + n + 1
Serial Exps 3k + 3
Remark: k: number of members in all other groups, m: number of merging groups

Table 4.13.: Complexity of STR m-group merge protocol

The merge protocol provides backward secrecy since all members are only given blinded keys of the other
groups. However, the merge protocol does not provide key independence, since knowledge of a group key
of tree T1 used before merge can be used to compute the group key used after the merge. This problem will
be remedied, if the sponsor in the second round update its session random. This solution is considered in
the improved merge protocol (Section 5.2.4).

The complexity characteristics of the m-group merge protocol are summarized in Table 4.13.
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Figure 4.9.: An example of STR partition

4.3.5. Partition proocol

The partition protocol is similar to the leave protocol. The only difference is the choice of the sponsor. We
usually choose the surviving leaf node directly below the lowest-numbered leaving member. If no such leaf
node exists, in other words, if M1 leaves the group, we choose the lowest-numbered surviving leaf node as
sponsor. An example is given in Figure 4.9.

Suppose we have a group of n members when p of them leave the group. The process is illustrated in
Protocol 4.12.

Protocol 4.12 (STR partition)

1. Round 1:
Every member

• updates the tree by removing the leaving members,
• sets n = n− p.

The sponsor Ms additionally

• updates its session random rs and the blinded one brs,
• computes new kn, and (ki, bki), ∀i ∈ [max(2, s), n− 1],
• broadcasts the updated tree with all blinded keys and its new blinded session random.

Ms T̂s(BK∗
s ∪ {brs})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

The complexity characteristics of partition protocol are summarized in Table 4.14.

4.3.6. Refresh protocol

No refresh protocol is defined in STR protocol by Kim et al. in [57]. With respect to other protocols in STR,
we suggest one as follows.

Suppose we have a group of n members, and member Mr, called refresher, updates its session random.
Then it computes all keys and blinded keys from its parent to root node. After computing it broadcasts the
updated tree with all blinded keys and its new blinded session random.

The process is illustrated in Protocol 4.13.
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s = 1 s ≥ 2

Rounds 1 1
Ucasts 0 0
Bcasts 1 1

Exps/Mi 2m− 2 for sponsor 2(m− s) + 2 for sponsor
m + 1− i for other members m + 1− i for Mi with i > s

m + 1− s for Mi with i < s
Ucast size 0 0
Bcast size m− 1 m

All Exps m2+3m−4
2

m2+3m−s−s2+2
2

Serial Exps 3m− 3 3(m− s + 1)
Remark: p: number of leaving members, m := n − p, s: index of sponsor in updated
tree

Table 4.14.: Complexity of STR partition protocol

Protocol 4.13 (STR refresh)

1. Round 1:
The refresher Mr

• updates its session random rr and the blinded one brr,
• computes kn, and (ki, bki), ∀i ∈ [r, n− 1],
• broadcasts the updated tree with all blinded keys and new session random.

Mr T̂r(BK∗
s ∪ {brr})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Every member Mi,

• if i < r, computes kj , ∀j ∈ [r, n],
• if i > r, computes kj , ∀j ∈ [i, n].

Like other protocols, we summarize the complexity characteristics in Table 4.15.

r = 1 r ≥ 2
Rounds 1 1
Ucasts 0 0
Bcasts 1 1

Exps/Mi 2n− 2 for sponsor 2(n− r + 1) for sponsor
n− i + 1 for other members n− i + 1 for Mi with i > r

n− r + 1 for Mi with i < r
Ucast size 0 0
Bcast size n− 1 n

All Exps n2+3n−4
2

n2+3n−r−r2+2
2

Serial Exps 3n− 3 3(n− r + 1)
Remark: LNr: refresher

Table 4.15.: Complexity of STR refresh protocol
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4.4. TGDH Protocol Suite

Kim et al. present in [58] the Tree-based Group Diffie-Hellman (TGDH). It uses a balanced binary key tree
to manage the keys. The security properties key independence and group key secrecy (see Section 3.8.3.3)
are guaranteed in TGDH.

Besides the notations in Figure 4.1, the following notations will be used for TGDH .

〈l, v〉 vth node at level l in a tree
k〈l,v〉 key of node 〈l, v〉

bk〈l,v〉 blinded key of node 〈l, v〉
T〈i,j〉 a subtree rooted at node 〈i, j〉

In a TGDH key tree, the node located at level 0, node 〈0, 0〉, is the root. The height h of a tree equals
the shallowest level. A member is associated with a leaf node. A non-leaf node is called an internal node
with two children. The left child of node 〈l, v〉 is node 〈l + 1, 2v〉, and the right one is node 〈l + 1, 2v + 1〉.
A node 〈l, v〉 has the key K〈l,v〉 and the corresponding blinded key bk〈l,v〉 = gk〈l,v〉 . The key k〈l,v〉 can be
recursively computed as follows:

k〈l,v〉= (k〈l+1,2v〉)k〈l+1,2v+1〉 mod p

= (k〈l+1,2v+1〉)k〈l+1,2v〉 mod p

= g(k〈l+1,2v〉k〈l+1,2v+1〉) mod p

〈0, 0〉

〈1, 0〉 〈1, 1〉

〈2, 0〉 〈2, 1〉

〈3, 0〉 〈3, 1〉 〈3, 6〉 〈3, 7〉

〈2, 2〉 〈2, 3〉

M1 M2

M3 M6

M4 M5

l = 0

l = 2

l = 2

l = 3

h = 3

Figure 4.10.: TGDH tree

Figure 4.10 gives an example of a key tree of a group with six members. The group key for this group is

k〈0,0〉 = g((gr3(gr1r2 ))(gr6(g(r4r5)))),

where r1, · · · , r6 are the keys of members M1, · · · ,M6 respectively. Considering this example, the
meaning of some notations is listed in the following:

h 3
KEY ∗

2 k〈3,1〉, k〈2,0〉, k〈1,0〉, k〈0,0〉
BK∗

2 bk〈1,0〉, bk〈1,1〉, bk〈2,0〉, bk〈2,1〉, bk〈2,2〉,

bk〈2,3〉, bk〈3,0〉, bk〈3,1〉, bk〈3,6〉, bk〈3,7〉
KpBK∗

2 bk〈3,1〉, bk〈2,0〉, bk〈1,0〉
CoBK∗

2 bk〈3,0〉, bk〈2,1〉, bk〈1,1〉

The overhead of the TGDH protocol depends on many factors, e.g. tree height, balance of the key tree,
location of insertion points and leaving members. Hence some characteristics can only be estimated for the
worst case, and some issues can even not be estimated.

Assume that we have a TGDH tree with n members, there are n − 1 internal nodes. Each member must
know all blinded keys of all nodes except for the root, and all keys in its key-path. So the memory costs for
M〈l,v〉 are 2n− 2 public keys and l + 1 keys.

The rest of this section gives an overview of the protocols setup, join, leave, merge and partition, and
refresh in TGDH.
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4.4.1. Setup protocol

[58] does not suggest any setup protocol. Related to other protocols in TGDH, we suggest a setup protocol
for TGDH.

Suppose there are n members who wish to form a group (key tree). The shallowest rightmost leaf node
is chosen as the sponsor. First, all members are ordered according to some criteria to be M1,M2, · · · ,Mn.
Then the first two members, M1 and M2, execute a 2-party DH key exchange. The same do the members
Mi and Mi + 1, where i is an even integer from [0, n]. Now we have dn2 e groups. Each sponsor broadcasts
then its tree with all blinded keys. The rest process is similar to be the one in the first round, if we consider
a member as a group with only one member. Such process is repeated until all members are in one group.
After i-th round the number of groups is reduced to d n

2i e. The setup of the group is finished after dlogn
2e

rounds.

〈0, 0〉

Step 1.

〈0, 0〉

〈1, 0〉 〈1, 1〉

M1 M2

〈0, 0〉

〈1, 0〉 〈1, 1〉

M5 M6

Step 2.

〈1, 0〉

〈2, 0〉 〈2, 1〉

M1 M2

〈1, 1〉

〈0, 0〉 〈0, 0〉

〈1, 0〉 〈1, 1〉

M5 M6

Step 3.

TI1
TI3

TII1 TII2

TIII

〈0, 0〉

〈1, 0〉 〈1, 1〉

M3 M4

TI2

〈2, 2〉 〈2, 3〉

M3 M4

〈2, 0〉

〈3, 0〉 〈3, 1〉

M1 M2

〈2, 1〉

〈1, 0〉

〈3, 2〉 〈3, 3〉

M3 M4

〈1, 1〉

〈2, 2〉 〈2, 3〉

M5 M6

Figure 4.11.: An example of TGDH setup

An example with n = 6 is given in Figure 4.11. Assume the order of members is M1, · · · ,M6. In the
first round M1 and M2 perform a DH key exchange and forms a new group TI1 . Similarly, groups TI2 of
M3 and M4, and TI3 of M5 and M6 are formed respectively. In the second round, M2, M4 broadcasts their
trees with respective blinded keys6. Then groups TI1 and TI2 form a new group TII1 , TI3 do nothing and is
renamed to TII2 . Finally the only two groups TII1 and TII2 form the group TIII1 consisting of all members.

The complexity characteristics of setup protocol are summarized in Table 4.16.

4.4.2. Join protocol

Assume that a new member Mn+1 joins to a group of n members {M1, · · · ,Mn}. The new member
broadcasts its join-request with its own bkey. After receiving the join-request, each member in current
group determines the insertion point. If the tree is fully balanced, that means n = 2h, where h is the height
of a tree, the new member joins to the root node. Otherwise, the shallowest rightmost leaf node is the
insertion point. The reason of such selection is to keep the key tree as balanced as possible.

The tree must be first updated. As in STR, the sponsor is the shallowest rightmost leaf in the subtree
rooted at the insertion node. A new intermediate node is created. Node at the insertion point becomes the
left child of the new intermediate node, and the new member becomes the right child.

The process of join protocol in TGDH is illustrated in Protocol 4.14.

6Since there are no more groups after TI3 , the sponsor M6 needs not to broadcast its tree.



4.4 TGDH Protocol Suite 71
Rounds h
Ucasts 0
Bcasts h2 − h + n

Exps/〈l, v〉 l +1+ i, where i is the least non-negative integer so
that b v

2i c is even. If 〈l, v〉 is the shallowest rightmost
leaf node in the finally formed tree, it is l + i.

Ucast size 0
Bcast size (h− 2)2h+2 + n + 8

Serial Exps 2h− 1
Remark: h = dlog2 ne

Table 4.16.: Complexity of TGDH setup protocol

Protocol 4.14 (TGDH join protocol)

1. Round 1:
The new member broadcasts its join-request with its blinded key.
Mn+1 M ′

n+1sbkey
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Every member

• updates key tree,
• removes all keys and bkeys from sponsor to the root node.

The sponsor Ms additionally,

• updates its share,
• computes then all keys and bkeys in its key-path,
• broadcasts the updated tree T̂s with all bkeys.

Ms T̂s(BK∗
s )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. Every member computes the group key using T̂s.

Figure 4.12 gives an example of a group with 3 members when a new member M4 joins into this group.
Member M3 is selected as the sponsor. Each member in the old tree updates the tree by inserting M4 and
removes the keys and blinded keys in M3’s key-path. The sponsor M3 additionally updates its share and
computes k〈1,1〉, bk〈1,1〉, and k〈0,0〉, and then broadcasts the updated tree with all blinded keys. Equipped
with the broadcast message, M1 and M2 computes the new k〈0,0〉, and M4 computes k〈1,1〉 and k〈0,0〉.

The complexity characteristics of the join protocol suggested in [58] is given in Table 4.17.

4.4.3. Leave protocol

The leave protocol is relatively simple. Assume that we have a group of n members and member Ml leaves
the group. The rightmost leaf node of Ml’s sibling subtree is selected as the sponsor. After notification from
GCS about the leave event, each remaining member updates its key tree by deleting Ml. The former sibling
of Md is promoted to replace Md’s parent node. The sponsor must additionally refresh keys in its key-path.
The process of leave protocol is illustrated in Protocol 4.15.
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Figure 4.12.: An example of TGDH join

Rounds 2
Ucasts 0
Bcasts 2

Exps/Mj 2ls for sponsor,
ls + 1− i if ∃i ∈ [0, ls] so that Mj ∈ T〈ls−i,vs/2i〉\T〈ls−i+1,vs/2i−1〉

Ucast size 0
Bcast size 2n + 1

Serial Exps 3ls
Remark: 〈ls, vs〉 : sponsor in updated tree

Table 4.17.: Complexity of TGDH join protocol

Protocol 4.15 (TGDH leave protocol)

1. Round 1:
Each member

• removes the leaving member and relevant parent node,
• removes all keys and bkeys pairs from sponsor to root node.

The Sponsor Ms additionally,

• updates its share,
• computes then all keys and bkeys in its key-path,
• broadcasts updated tree T̂s including all blinded keys.

Ms T̂s(BK∗
s )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Every member computes the group key using T̂s.

Figure 4.13 gives an example of a group of 3 members when M3 leaves this group. M5 is selected as the
sponsor. The remaining members M1, M2, M4, and M5 remove the nodes 〈2, 2〉 and 〈1, 1〉. M5 additionally
updates its share and computes k〈1,1〉, bk〈1,1〉, k〈0,0〉, and then broadcasts the updated tree with all blinded
keys. Equipped with this broadcast message, M1 and M2 compute new k〈0,0〉, and M4 computes k〈1,1〉 and
k〈0,0〉.

The complexity characteristics of leave protocol suggested in [58] are summarized in Table 4.18.
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Figure 4.13.: An example of TGDH leave

Rounds 1
Ucasts 0
Bcasts 1

Exps/Mj 2ls for sponsor,
ls + 1− i if ∃i ∈ [0, ls] so that Mj ∈ T〈ls−i,vs/2i〉\T〈ls−i+1,vs/2i−1〉

Ucast size 0
Bcast size 2n− 4

Serial Exps 3ls
Remark: 〈ls, vs〉 : sponsor in updated tree

Table 4.18.: Complexity of TGDH leave protocol

4.4.4. Merge protocol

Compared to CLIQUES, the main virtue of TGDH is that it is much simpler to merge two or more groups.
Multiple join can be processed as follows. We assume that m members want to join group G1. The m
individual members form a TGDH group G2 using setup protocol. Then G2 merges with G1.

We consider first the merge of two groups. It can be simply extended to the merge of more than two
groups, say k > 2, groups by executing the two-group merge k − 1 times.

First the two trees are ordered from the highest to lowest, denoted T 1 and T 2. If they are of the same
height, they are ordered according to some other criteria. T 2 joins to T 1, and the insertion point is deter-
mined. If the two trees are of the same height, we join simply T 2 to the root node of T 1. Otherwise we first
try find the rightmost shallowest node where the join would not increase the overall tree height. If no such
node exists, the insertion point is the root node.

Assume that we have m trees to be merged. They can be ordered from the highest to the lowest:
T 1, · · · , Tm. To perform merge, each tree T i has its rightmost shallowest leaf node as sponsor Msi . The
process is illustrated in Protocol 4.16.

Protocol 4.16 (TGDH merge protocol)

1. Round 1: Each sponsor Msi in tree T i

• updates its share,
• computes all keys and bkeys in the key-path of T i (including bk〈0,0〉),

• broadcasts updated tree T̂ i including only all bkeys. For i = 1, 2, · · · ,m
Msi T̂ i

si
(BK∗

s ∪ {bk〈0,0〉})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

Each member

• updates the key tree and determinates the new sponsors
Ms1 , · · · , Mst ,
• removes all keys and bkeys in sponsors’ key-paths.
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2. Round 2 to q (repeat this step until any sponsor computes group key):

Each sponsor Msi with 1 ≤ i ≤ t

• computes all keys and bkeys pairs in the key-path as far as possible,
• broadcasts updated tree with all blinded keys.

Msi T̂si(BK∗
si

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

3. Every member computes the group key using T̂si

An example of the merge of two groups is given in Figure 4.14. Both sponsors M5 and M7 updates
first their shares respectively. Then M5 computes new k〈1,1〉, bk〈1,1〉, k〈0,0〉 and bk〈0,0〉 in tree T5, and M7

computes k〈0,0〉 and bk〈0,0〉 in tree T7. Both sponsors M5 and M7 broadcast their updated trees with all
bkeys7. Each member merges both trees independently, and chooses M2 as the new sponsor. All members
remove then all keys and bkeys in M2’s key-path. M2 additionally updates its share and computes new k〈2,1〉,
bk〈2,1〉 , k〈1,0〉, bk〈1,0〉, and k〈0,0〉. M2 broadcasts then the updated tree with all blinded keys. Equipped with
the broadcast message, M1 computes k〈2,0〉, k〈1,0〉, and k〈0,0〉. M6 and M7 compute k〈1,0〉, and k〈0,0〉. All
other members M3, M4, and M5 compute only the new group key k〈0,0〉. Since there is only one sponsor
for the merge of two groups, M2 knows all blinded keys in its co-path so that it is able to compute all keys
and blinded keys in its key-path.
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Figure 4.14.: An example of 2-group TGDH merge

The complexity characteristics of merge protocol for the worst case are summarized in Table 4.19.

7including the root’s bkey
8Assume that Mj is in tree T k before the merge:

• µ =

(
2l′sk

+ 1, Mj is sponsor 〈l′sk
, v′sk

〉;
l′sk

+ 1 − i, if ∃i ∈ [0, l′sk
] so that Mj ∈ T k

〈l′sk
−i,v′sk

/2i〉 \ T k
〈l′sk

−i+1,v′sk
/2i−1〉.

• ν =

�
2ls1 − 1, Mj is sponsor 〈ls1 , vs1〉;
ls1 + 1 − i, if ∃i ∈ [0, ls1 ] so that Mj ∈ T〈ls1−i,vs1/2i〉 \ T〈ls1−i+1,vs1/2i−1〉.
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m = 2 m ≥ 3

Rounds 2 dlog2 me+1
Ucasts 0 0
Bcasts 3 2m

Exps/Mj
8 µ + ν µ + β

Ucast size 0 0
Bcast size 4(n + k − 1) 2(m + 1)(n + k − 1) + m(m− 2)

Serial Exps 3·max(l′s1
, l′s2

)+3ĥ− 2 3·max(l′s1
,· · · ,l′sm

)+(3ĥ− 2)
Remark: n(k): number of members in the highest tree (all other trees), m: number of
merging groups, 〈l′sk

, v′sk
〉 with k ∈ [1, m]: sponsor of tree T k before merge, 〈lsk , vsk 〉

with k ∈ [1, t]: sponsor in merge.

Table 4.19.: Complexity of TGDH merge protocol (worst case)

4.4.5. Partition protocol

Assume that we have a group of n members and k of them leave the group. In the first round, every
remaining member updates its tree by deleting all partitioned members as well as their respective parent
nodes. In other words, if all leaf nodes of a subtree leave the group, the root node of this subtree is marked
as leaving (namely the whole subtree is marked as leaving) and its leaf nodes are removed from the leaving
nodes list. For each leaving node we identify a sponsor using the same criteria as described in Section 4.4.3.

The process of partition protocol is illustrated in Protocol 4.17.

Protocol 4.17 (TGDH partition protocol)

1. Every member

• updates key tree by deleting all leaving member nodes and their parent nodes,
• removes all keys and bkeys from sponsors to the root node.

The shallowest rightmost sponsor additionally updates its share.

2. Round 1 to q (Repeat this step until any sponsor computes the group key):
Each sponsor Msi

• computes all keys and bkeys in the key-path as far as possible,
• broadcasts updated tree including all bkeys.

Msi T̂si(BK∗
si

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

3. Every member computes the group key using T̂si(BK∗
si

).

An example of TGDH partition is given in Figure 4.15. A group of seven members M1, · · · , M7 is
partitioned. From the perspective of M5, members M2, M4, M6 and M7 leave the group, so M5 is in tree
T̂5 after the partition, the same for M2, M4, M6 and M7. However from the perspective of M4, the leaving
members are M1, M3, and M5. So M4 is in tree T̂4 after the partition. The same for M2, M6, and M7.

The complexity characteristics of partition protocol (worst case) are summarized in Table 4.20.

• β =

�
2lsk − 1, Mj is sponsor 〈lsk , vsk 〉 ;
max(ρ1j , · · · , ρtj ), for other members, where 1 ≤ m ≤ t, and

ρmj = lsm + 1 − i, if ∃i ∈ [0, lm] so that Mj ∈ T〈lsm−i,vsm /2i〉 \ T〈lsm−i+1,vsm /2i−1〉
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Figure 4.15.: An example of TGDH partition

Rounds min(dlog2 pe+ 1, b)
Ucasts 0
Bcasts min(2p,dn2 e)

Exps/Mj 2ls1 for sponsor 〈ls1 , vs1〉,
2lsm − 1 for sponsor 〈lsm , vsm〉, m ∈ [2, t],
max(ρ1j , · · · , ρtj ) for other members.

Ucast size 0
Bcast size 2(m− 1)·min(2p, dn2 e)

Serial Exps 3ĥ

Remark: m: number of members in updated tree, p: number of leaving members,
〈ls1 , vs1〉, · · · 〈lst , vst〉: sponsors, the first is the rightmost shallowest sponsor.

Remark: ρmj = lsm + 1 − i if ∃i ∈ [0, lsm ] so that Mj ∈ T〈lsm−i,vsm /2i〉 \
T〈lsm−i+1,vsm /2i−1〉, for 1 ≤ m ≤ t.

Table 4.20.: Complexity of TGDH partition protocol

4.4.6. Refresh protocol

No refresh protocol is defined in TGDH protocol. With respect to other protocols of TGDH protocol suite,
we suggest in the following a refresh protocol. Assume that there is a group with key tree T when a refresher
Mr refreshes its share. The process is illustrated in Protocol 4.18.

Protocol 4.18 (TGDH refresh protocol)

1. Round 1:
The refresher Mr

• updates its share,
• computes newly all keys and bkeys in its key-path,
• broadcasts the updated tree with all bkeys.

Mr Tr(BK∗
r )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Each member except refresher Mi

• removes all keys and bkeys from the refresher Mr to root node,
• updates the blinded keys,
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• computes the group key.

The complexity characteristics are summarized in Table 4.21.

Rounds 1
Ucasts 0
Bcasts 1

Exps/Mj 2lr for refresher,
lr + 1− i if ∃i ∈ [0, lr] so that Mj ∈ T〈lr−i,vr/2i〉\T〈lr−i+1,vr/2i−1〉

Ucast size 0
Bcast size 2n− 2

Serial Exps 3lr
Remark: 〈lr, vr〉 : refresher

Table 4.21.: Complexity of TGDH refresh protocol

4.5. Complexity Analysis of Group Key Agreement Protocols

This section analyzes the memory, communication, and computation costs for all protocols described in this
chapter. Many symbols are used and are defined throughout this chapter. For simplicity, we list them again
in Figure 4.16.

n number of members in current group,
or in the largest group in merge

m number of merging groups
p number of leaving groups
k number of members in all non-largest groups in merge
d d = dlog2 ne, used in 2d-cube and 2d-octopus
h height of initial TGDH tree
ĥ height of updated TGDH tree
α sum of height of all TGDH trees except the highest tree T 1 in

merge
s index of sponsor in updated tree in STR

〈ls, vs〉(〈lsi , vsi〉) sponsor(s) node in updated tree in TGDH

Figure 4.16.: Notation

Among the various costs that we can consider, we focus on the number of stored keys and blinded keys, the
number of rounds, the total number of unicast and broadcast messages, the cumulative unicast and broadcast
message size, and the serial number of exponentiations. For serial costs operations that are performed by
members in parallel are counted as one operation. In this case the highest costs are considered. The total
costs are represented by the sum of all participants’ costs in a given round (or protocol).

4.5.1. Memory costs

Table 4.22 gives an overview of the memory costs of all protocols. No wonder that the memory costs of
protocols 2d-cube, 2d-octopus, and Asokan-Ginzboorg are only 1 key. Members in those protocols do not
need to store the intermediate keys and their public values so that they are not able to deal with the group
changes. So we consider the other three protocols. In CLIQUES each member needs only to store its session
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random and the group key, and n + 1 additional public keys. Members in TGDH and STR have to store all
keys in their key-paths and 2n − 2 public keys. In STR the number of keys in the key-path depends on the
location of the member, the deeper member needs to store more keys. The average value is n+3

2 . In TGDH
it depends on the level of the member. A member in a deeper level needs to store more keys. Averagely
dlogn

2 e+ 1 keys are in the key-path.
As a whole, CLIQUES has the lowest memory cost, whereas STR the highest.

Protocol keys public keys
2d-cube concretely 1 0

2d-octopus concretely 1 0
Asokan-Ginzboorg concretely 1 0

CLIQUES concretely 2 n + 1

STR
per LNl n + 2−max(l, 2) 2n− 2

averagely n+3
2 2n− 2

TGDH
per 〈l, v〉 l + 1 2n− 2
averagely dlogn

2e+ 1 2n− 2

Table 4.22.: Memory cost of protocols 2d-cube, 2d-octopus, Asokan-Ginzboorg, CLIQUES, STR, and
TGDH

4.5.2. Communication and computation costs

Table 4.23 gives an overview of communication and computation costs for all protocols except Asokan-
Ginzboorg. This is because Asokan-Ginzboorg considers faulty members unlike other protocols, which
makes it incomparable with other protocols. Since 2d-cube and 2d-octopus provide no protocols for dynamic
group operations, only the complexity characteristics of operation setup for both are considered. While for
all other three protocol suites we analyze additionally the costs of all dynamic group operations (join, leave,
merge, partition, and refresh).

The communication and computation overheads of the TGDH protocol depend on the tree height, the
balance of the key tree, the location of the joining tree, and the leaving nodes. In our analysis, we assume the
worst case configuration and list the worst-case costs for TGDH. The number of modular exponentiations
in STR after a leave event depends on the location of the deepest leaving node (the sponsor). Hence we
compute the average cost, i.e. the case when the sponsor is the n−p

2 -th node in the updated tree. All other
protocols, except TGDH and STR, show exact costs. We compare in the following the six operations for
CLIQUES, STR and TGDH.

Setup STR is the most communication efficient protocol. Only two rounds are needed to initialize a
new group. CLIQUES is the most expensive communication protocol, it requires n + 1 rounds. TGDH is
comparatively efficient, the number of rounds scales logarithmically in the number of members.

We consider now the number of messages and the message size. STR requires only n + 1 messages,
whereas CLIQUES and TGDH require approximately twice as many messages. The cumulative message
size of STR is also the lowest, only 2n− 1 blinded keys are contained in the messages. CLIQUES requires
approximately 50% more cumulative message size, 3n− 2. TGDH consumes much more bandwidth. Con-
sidering a balanced TGDH tree, h = dlog2 ne ≈ log2 n + 1. The total number of sent blinded keys is
n + (h− 2)2h+2 + 8 = n + (log2 n− 1)2log2 n+3 + 8 = 8n log2 n− 7n + 8.

With respect to the serial modular exponentiations, TGDH is the most computation efficient, the number
of serial modular exponentiations scales logarithmically in the number of members. CLIQUES and STR
require a linear number of serial exponentiations relative to the group size, and STR consumes 50% more
serial exponentations.
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Protocol Protocol Rounds Ucasts Bcasts Ucast size Bcast size Serial Exps

Suite
2d-cube setup d nd 0 nd 0 2d − 1

2d-octopus setup d + 2 3(n-2d) 0 3(n-2d) 0 2d + 3
+2d·d +2d·d

CLIQUES

IKA.2 n + 1 2n − 3 2 2n − 3 n + 1 2n + 1
Join 2 1 1 n + 1 n + 1 2n + 1
Leave 1 0 1 0 n − 1 n − 1
Merge k + 1 k 1 (k2+2nk n + k (k2+2nk+

+k)/2 k+2n)/2
Partition 1 0 1 0 n − p n − p
Refresh 1 0 1 0 n n

STR

setup 2 0 n + 1 0 2n − 1 3n − 2
Join 2 0 2 0 2n 6
Leave 1 0 1 0 n − 1 3n/2

2-merge 2 2 1 2(n+k-2) 2(n+k-1) 3k + 3
m-merge 2 0 m + 1 0 4(n+k) 3k + 3

-2m-1
Partition 1 0 1 0 n − p 3(n-

p)/2+3
Refresh 1 0 1 0 n 3n/2+3

TGDH

setup h 0 h2-h+n 0 (h-2)2h+2 2h − 1
+n+8

Join 2 0 2 0 2n + 2 3h
Leave 1 0 1 0 2n − 4 3h

2-merge 2 0 3 0 4(n+k-1) 3(h+ĥ)-2
m-merge dlog2 me+1 0 2m 0 2(m+1)(n+ 3(h+ĥ)-2

k)+m(m-2)
Partition min(ĥ, 0 min(2p, 0 2(n-p-1)· 3ĥ

dlog2 pe+1) dn
2 e) min(2p, dn/2e)

Refresh 1 0 1 0 2n − 2 3h

Table 4.23.: Communication and computation costs of protocols 2d-cube, 2d-octopus, CLIQUES, STR, and
TGDH

Join All protocols require 2 rounds and 2 messages. The cumulative size for all protocols is approximately
same. While STR and TGDH requires 2 broadcast messages, 1 unicast message and 1 broadcast message
are required by CLIQUES. Hence CLIQUES has more communication efficiency than other protocols.

However, CLIQUES is the most expensive in terms of computation, requiring a linear number of ex-
ponentiations relative to the group size. TGDH is comparatively efficient, the number of serial modular
exponentiations scales logarithmically in the number of members. STR, in turn, requires a constant number
of modular exponentiations.

Leave All protocols require 1 rounds and 1 broadcast message. CLIQUES and STR require the same
cumulative message size, approximately the group size.

However, TGDH is most computation efficient, the number of serial modular exponentiations scales
logarithmically in the number of members. STR and CLIQUES scale linearly in the group size. The number
of serial exponentiations of STR is 3n

2 , and of CLIQUES is 2n.

Merge We first look at the communication costs. Note that the number of communication rounds in
CLIQUES scales linearly in the number of the members added to the group, whereas STR is more efficient
having a constant number of rounds. Although a merge for TGDH takes multiple rounds, it depends on the
number of merging groups which is mostly small.
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The message size of CLIQUES, approximately k2+2nk

2 , is much larger than in other protocol suites. The
merge of STR and TGDH is further divided into 2-group merge (2-merge) and m−group merge (m−merge).
Considering first 2-merge, the number of rounds, of messages, and message size are nearly the same in STR
and TGDH. The difference is that two messages in STR are unicast messages. So STR is more communica-
tion efficient than TGDH.

Considering m-merge, STR is also more communication efficient than TGDH. Only 2 rounds are re-
quired, like in 2-merge, while the number of rounds in TGDH scales linearly in the number of merging
groups. With respect to the number of messages and the cumulative message size, STR is also more effi-
cient than TGDH.

So we can conclude that STR is most suitable to handle the merge event with respect to communication
costs.

In the following we consider the computation costs. TGDH is most efficient, the number of serial modular
exponentiations scales logarithmically in the number of the product of the largest group’s size and the num-
ber of all members. In STR, it scales in the number of all non-deepest groups. CLIQUES is further the most
inefficient protocol to handle the merge event, approximately k2+2nk

2 serial exponentiations are needed.

Partition Table 4.23 shows that the CLIQUES and STR protocols are bandwidth efficient: only one round
consisting of one message, and both protocols are of the same message size, which equals the number of
remaining group members. While partition is the most expensive operation in TGDH, requiring a number
of rounds bounded by at most the minimum of the updated tree’s height and log2 p + 1. The message size
in TGDH is also considerable. Hence STR and CLIQUES are most suitable to handle partition event with
respect to communication costs.

With respect to the computation costs, TGDH requires a logarithmic number of exponentiations, while
CLIQUES and STR scale linearly in the group size. STR requires approximately 50% more computation
costs than CLIQUES. Hence TGDH is most suitable with respect to computation costs.

Refresh The costs to handle refresh event are similar to those to handle leave event. Hence we refer the
reader to the paragraph analyzing the costs for leave.

4.5.3. Discussion summary

As discussed above, the STR protocol is most suitable in networks where high network delays dominate.
However, its computation costs are most expensive. CLIQUES consumes less memory costs compared
to STR and TGDH. However, in setup and merge, it takes much more rounds. The computation costs of
TGDH in all protocols is much less than those of CLIQUES and STR. The only exception is in protocol join,
where STR requires only 6 serial exponentiations. The major disadvantage of TGDH is the great number of
required rounds to handle the partition.



5. Protocols for Ad Hoc Networks

In recent years some protocols are suggested for ad hoc networks. Two of those are suggested by Asokan
et al. in [8] and Hietalahti in [41]. However, most of them are not able, and it is unclear, how they can
be extended to handle dynamic group operations. However, such operations are indispensable for ad hoc
networks. The topology for key agreement may change voluntarily or involuntarily, e.g. partition when the
network failure occurs, or merge when the network fault heals.

In this chapter we present how could STR and TGDH be optimized for ad hoc networks. The optimized
versions are denoted Ad Hoc STR (µSTR) and Ad Hoc TGDH (µTGDH) respectively. Additionally we
propose a Tree-based group key agreement Framework for Ad-hoc Networks (TFAN) based on µSTR and
µTGDH.

We have implemented all three protocols. The description of TFAN API can be found in Section 6. The
classes in µSTR API and µTGDH API are overviewed in Appendix A.3 and A.4 respectively. For details
please refer to their javadoc documents.

All protocol suites discussed in this chapter are optimized in the following directions:

1. Using Tree-based Diffie-Hellman over groups of elliptic points (EC-TbDH) key exchange, instead of
Tree-based Diffie-Hellman (TbDH), to reduce computation costs. Each node N is associated with the
key kN and the public key pkN = g(kN ), where g(·) is multiplication with the base point in elliptic
curve E over field Fp or F2m , i.e. g(k) = kG, where G(xG , yG) is the base point of elliptic curve E
with x-coordinate xG and y-coordinate yG . Let N be an internal node with two children, the left Nl

and the right Nr. To compute kN , one needs to know the key associated with one child, and the public
key associated with the other. kN could be computed as follows:

kN =f(kNl
· pkNr

)
=f(pkNl

· kNr
)

=f(kNl
· kNr

·G)

Where f(·) is a function which transform a point P (xP , yP ) to a valid secret for next step, e.g.
f(P (xP , yP )) = xP mod q, where q is a prime order of the base point in the elliptic curve E.

Since EC-TbDH is applied, the most expensive operation is the scalar-point-multiplication (Mul).
This operation is cheaper than modular exponentiations in Z∗

p, if properly implemented.

2. Minimizing the number of serial multiplications. Some randoms are generated and their public val-
ues are then computed before the member joins to the group. These values are stored in a table,
denoted by random-depot. If the member needs to update the share, it picks up the first random from
random-depot which differs the current share, together with its public value. Additionally the sponsor
computes the group key always after the sending of the message in parallel with other members so
that one serial multiplication can be saved.

3. Minimizing the message size. After setup of the key tree, for each update (join, leave, merge, partition,
and refresh) only the necessary, instead of all, blinded keys are broadcasted so that the message size
can be significantly reduced. We define here the update-list of member M which stores the nodes
whose bkeys should be computed and broadcasted by M. The message size is also reduced due to
ECC.

4. Minimizing the memory costs by removing redundant information and switching to ECC.



82 Protocols for Ad Hoc Networks
All protocol suites described in this chapter are formed by the following six basic protocols: setup, join,

leave, merge, partition and refresh. All protocols share a common framework with the following features:
• Each group member contributes a share to the group key, which is computed as a function of all

current group members’ shares. Each contribution is equally important.
• Each group key is secret and known only to all current group members.
• As the group grows, one current member, denoted the sponsor, changes its share, and the new group

key is a function of all current members’ shares (including joined members).
• As the group shrinks, leaving members’ shares are removed from the new group key, and one remain-

ing member, denoted the sponsor, changes its share. The new group key is a function of the sponsor’s
new share and all other remaining members’ shares.
• According to the security policy, a member, denoted refresher, changes its share. The sponsor’s new

share is then factored into the new group key.
• All protocol messages are signed by the sender. All cryptographic strong public key signature schemes

can be used. However, to save the computation costs, digital signature schemes using elliptic curve,
e.g. ECDSA, are used.

Due to the absence of PKI in ad hoc networks, some other techniques for authentication are suggested for
the authentication in the protocol suites described in this chapter.

In heterogeneous ad hoc networks, all protocols described in this chapter can be further optimized. Since
the sponsors have to compute not only all keys, but also all blinded keys in their key-paths, it may be
undesirable of some nodes. The burden of such sponsors can be alleviated by partaking of other more
powerful nodes in the computation. Considering the example in Figure 4.14. The sponsor M2 updates its
share, unicasts its public key to M1, and let the latter compute the key-pairs in the key-path. M1 broadcasts
then the known bkeys in M2’s key-path. If the sponsor and the other more powerful member are not siblings,
the sponsor should first compute the key-pairs that not in the other’s key-path. If M2 let M4 partake the
computation, M2 must first compute key-pairs of 〈2, 0〉.

The remainder of this chapter is organized as follows. Section 5.1 suggests some techniques for authenti-
cation. µSTR is discussed in Section 5.2, while µTGDH in Section 5.3, and TFAN in Section 5.4. In Section
5.5 we summarize the complexity characteristics of all protocols discussed in this chapter. The experimental
results are summarized in Section 5.6.

5.1. Authentication

Our protocol suite uses public and authentic channel. Everyone, both the member and the adversary, can
read the messages. And all messages are signed to guarantee the non-repudiation.

PKI will be used if it exists. However, unlike in traditional networks, no present PKI can be assumed in
ad hoc networks. In following we first analyze two techniques suggested in the literature: password-based
public key distribution (Section 5.1.1) and PKI for ad hoc networks (Section 5.1.2).

5.1.1. Password-based public key distribution

Every member knows some secret before he joins the group. A typical scenario is that the participants of a
meeting wish to form a group. It is realistic to assume that they share some password P.

Assume that n members wish to form a group. Each member first picks up a key pair for genera-
tion/verification of signatures from its random-depot or generates it newly. The public key together with
some other information are broadcasted. The detailed process is illustrated in Protocol 5.1. For clarity’s
sake, private key and public key are denoted sk and pk, respectively.

1The symmetric encryption schemes can be applied. And the corresponding key can be derived from P .
2It means that (Mi, Ci) is signed with the private key ski.
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Protocol 5.1 (Password-based public key distribution)

1. Round 1: Each member Mi, i = 1, · · · , n
• picks up a key pair (ski, pki),
• encrypts pki and its own identity: Ci = P (Mi, pki), 1

• signs (Mi, Ci) with ski: Si = signski
(Mi, Ci), 2

• broadcasts message (Mi, Ci, Si) .
Mi Mi, Ci, Si−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Each member Mj verifies (Mi, Ci, Si) for all i ∈ {1, · · · , n} \ {j}:
a) decrypts Ci and compares the first part with Mi. If they are different, this message is rejected.

Otherwise, picks up pki and,
b) verifies the signature using pki gathered in step a. If correct, it accepts the with Mi associated

public key.

An adversary can surely replace the unencrypted identity. However, without knowing P , it is not able to
form an encrypted message whose first part corresponds the identity. Protocol 5.1 is vulnerable to replay
attack. An adversary can broadcast a legal message at some later time. To reduce or avoid such attacks, P
must be refreshed periodically.

However, Protocol 5.1 is only suitable for static groups, but not for dynamic groups. The reason is that
the secret P must be changed after every leaving event (leave, partition). But how can the new secret P
be securely agreed? Since the old members know the same information as the remaining members, they can
read any information protected with the old secret.

5.1.2. PKI for ad hoc networks

PKI has been recognized as one of the most successful and important tools for providing security for dynamic
networks. However, due to the infrastructure-less nature of ad hoc networks, it is still unclear if the PKI-
approaches in traditional networks can be extended to ad hoc networks.

To provide PKI functionality in ad hoc network, Yi et al. [128] present an efficient and effective communi-
cation protocol which is suitable for heterogeneous ad hoc networks. In this protocol threshold cryptography
is applied to distribute the Certificate Authority (CA) functionality over specially selected nodes based on
security and physical characteristics of the nodes. Such nodes are called MOCA(MObile Certificate Author-
ity)s.

Assume that there is an ad hoc networks with N members. n of them are selected as MOCAs. They
share the key of the unique CA, and k pairwise distinct nodes are needed to construct the full key. Any
client requiring a certification service must contact at least k MOCAs. Each contacted MOCA generates a
partial signature over the received data and sends it back. At least k such partial signatures must be selected
to reconstruct the full signature and successfully receive the certification service. Unlike normal PKI, the
certificates are stored in the holder’s node. Hence the certificates can not be accessed from certificate depots.

However, the MOCAs have to stay continuously in the group, otherwise shares have to be redistributed,
and the communication by issuing the certificate might be too expensive.

Another approach is to use the certificate with short period of validation, e.g. one month. The validity
of certificates are not checked over CRL (Certificate Revocation List) or OCSP (Online Certificate Status
Protocol), hence no online PKI is required. Advantages of this approach against MOCA is the saving
of communication cost and easy management. Furthermore, it is suitable for dynamic groups, unlike the
password based authentication described in 5.1. Hence this approach will be applied in our APIs.

Every node must be equipped with the CAs’ certificates, and the CAs are set as the trust anchors so that
the certificates of members can be verified. We assume that each member has certificates issued by the
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trusted CAs. If some nodes wish to form a group, they broadcast their certificates in the first message so
that their messages can be verified. To save one broadcast message, the certificate can be sent together with
the public key and other informations needed for the group key agreement. To save the memory costs and
to compute digital signatures efficiently, ECDSA is used.

In operation join the new member broadcasts its certificates. Current group members’ certificates are sent
by the sponsor to the new member. While in operation merge every sponsor broadcasts certificates of all
members in its group so that they are known to all members in other groups. Since in operations leave and
partition no new members are added, sending certificates is not required.

5.2. µSTR Protocol Suite

The STR protocol suite described in Section 4.3 has some redundant information. We suggest here an µSTR
key tree which contains only the necessary information. In the µSTR tree, to compute the group key, member
Ml does not need all blinded keys and blinded session randoms (summarized as bkeys in following), but only
those in its co-path. Additionally Ml stores also the keys in its key-path. So the memory costs are n− l + 2
keys and n− l + 1 public keys for l ≥ 2, and n keys and n− 1 public keys for l = 1. Compared to the STR
tree, n + l − 3 public keys for l ≥ 2, and n− 1 public keys for l = 1 have to be saved.

The tree and the criterion to handle the tree to adapt the dynamic events in µSTR are same as in STR,
hence they are omitted in this section.

5.2.1. Setup protocol

Compared to Protocol 4.7 of STR, setup protocol in µSTR is optimized as follows: The sponsor computes
the root’s key first after it broadcasts the message. The broadcast message consists of only a list of all
blinded keys in M1’s key-path except br1/bk1, but not the whole tree with all bkeys. With this optimization
the message size can be halved. Since M2 knows also all bkeys in its co-path, M1 and M2 compute all keys
in their key-paths in parallel. M1 computes additionally the bkeys in its key-path and broadcasts the changed
bkeys. Each member except M1 picks up the bkeys in its co-path from the broadcast message. Equipped
with the new bkeys it can compute the keys in its key-path. The detailed process is illustrated in Protocol
5.2.

Protocol 5.2 (µSTR setup)

1. Round 1: Every member Mi, i ∈ {1, · · · , n}:
Mi bri−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M∗

2. Round 2: The member M1

• computes recursively ki and bki, ∀i ∈ [2, n− 1],
• broadcasts all blinded keys bki, ∀i ∈ [2, n− 1].

M1 {bkj |2 ≤ j ≤ n− 1}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

The member M2 computes recursively ki, ∀i ∈ [2, n].

3. Every member Mi,

• if i = 1, computes kn,
• if i ∈ [3, n], computes recursively kj , ∀j ∈ [i, n].

Looking at the STR key tree with n members in Figure 4.5, M1 broadcasts the bkeys bki, ∀i ∈ [2, n− 1].
M5 picks up the bkey in its co-path, i.e. bk4. After updating the bkeys all members can compute the group
key.

The complexity characteristics of setup protocol are summarized in Table 5.1.
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Rounds 2
Bcasts n + 1

Muls/Mi 2n− 1 for i = 1,
n− i + 1 for 2 ≤ i ≤ n,

Bcast size 2n− 2
All Muls n2+3n−2

2
Serial Muls 3n− 4

Table 5.1.: Complexity of µSTR setup protocol

5.2.2. Join protocol

As in STR, in the first round, the potential new member broadcasts a join request with the blinded key.
The criteria to choose the sponsor and to update the tree is unchanged. After the update of the tree and the
computation of key-pairs the sponsor broadcasts the updated tree. Only the bkeys in the sponsor’s key-path
(always brn−1 and bkn−1) are broadcasted, instead of all blinded keys. With this optimization the message
size is significantly reduced. Only two bkeys in µSTR are broadcasted, while in STR 2n − 1 bkeys. Every
member in the previous group replaces the sponsor’s bkey brn−1, the new member picks up the bkey bkn−1.
Now all members can compute the new group key. The detailed process is illustrated in Protocol 5.3.

Protocol 5.3 (µSTR join)

1. Round 1: The new member broadcasts its blinded session random.
Ms brn+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Round 2: Each member

• updates the tree by inserting Mn+1 as described in 4.3.2,
• sets n = n + 1.

The sponsor Mn−1 additionally,

• updates its session random rn−1 and blinded session random brn−1,
• computes new kn−1, bkn−1,
• broadcasts bkn−1 and brn−1.

Ms bkn−1, brn−1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. Every member Mi,

• if i = s (sponsor), computes kn,
• if i = n (new member), picks up bkn−1 and computes kn.
• if i ∈ [1, n− 2], picks up brn−1 and computes kn−1 and kn.

Looking at the example in Figure 4.6, the sponsor M4 broadcasts the bkeys br4 and bk4. The members
M1, M2, and M3 replace the old br4 with the new one. They compute then k4 and k5. M5 picks up bk4 and
computes then k5.

The complexity characteristics of the join protocol are summarized in Table 5.2.

5.2.3. Leave protocol

Assumed that we have again a group of n members, and the member Ml leaves the group. Each remaining
member updates the key tree by removing the leaving member. We consider now the updated tree. If
the sponsor is M1, the blinded keys bki, i ≥ 2 and br1 will be broadcasted. Otherwise, the blinded keys
bki, i ≥ s and brs will be broadcasted. The detailed process is illustrated in Protocol 5.4.
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Rounds 2
Bcasts 2

Muls/Mi 3 for sponsor,
1 for new member,
2 for other members.

Bcast size 3
All Muls 2n + 2

Serial Muls 4

Table 5.2.: Complexity of µSTR join protocol

Protocol 5.4 (µSTR leave)

1. Round 1: Every member

• updates the tree by removing the leaving member Ml,
• sets n = n− 1.

The sponsor Ms
2additionally

• updates its session random rs,
• computes ki and bki, ∀i ∈ [max(2, s), n− 1],
• broadcasts brs and bki, ∀i ∈ [max(2, s), n− 1].

Ms {bkj |max(2, s) ≤ j ≤ n− 1} ∪ {brs}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. The sponsor computes kn, and each other member Mi picks up the bkey in its key-path,

• if i < s, computes kj , ∀j ∈ [s, n],
• if i > s, computes kj , ∀j ∈ [i, n].

Considering the example in Figure 4.7. The sponsor M2 updates r2 and br2, computes then k2 and bk2.
It broadcasts then br2 and bk2. M1 picks up br2, and M3 picks up bk2. Now all remaining members can
compute the updated group key.

The complexity characteristics of leave protocol are summarized in Table 5.3.

s = 1 s ≥ 2
Rounds 1 1
Bcasts 1 1

Muls/Mi 2n− 5 for sponsor 2n− 2s− 1 for sponsor
n− i for other members n− i for Mi with i > s

n− s for Mi with i < s
Bcast size n− 2 n− s

All Muls n2+n−8
2

n2+n−s−s2−2
2

Serial Muls 3n− 8 3n− 3s− 2
Remark: Ms: sponsor in updated tree

Table 5.3.: Complexity of µSTR leave protocol

2s = l − 1 if l > 1 or s = 2 if l = 1.
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5.2.4. Merge protocol

In the original merge protocol of STR, the sponsor broadcasts trees with all blinded keys and blinded session
randoms. The communication cost can be significantly reduced by broadcasting the tree with only the
blinded session randoms.

Assume that m trees T i, i ∈ [1,m] participate in the merge protocol. The size of tree T i is denoted ni

with n1 ≥ n2 · · · ≥ nm. For sake of the clarity, we define n to be n1, and k =
∑m

i=2 ni.
First the tree must be broadcasted. In STR it is the work of the topmost member. However, in µSTR,

all members know only the blinded session randoms in its co-path, and only M1 and M2 know all blinded
session randoms. Hence M1 is chosen as the broadcast sponsor. It broadcasts the tree with all blinded session
randoms. After the collection of all merge requests, all members sort the trees as described in Section 4.3.4.
The criteria to update the tree and to choose the sponsor is also same as that in Section 4.3.4.

For sake of clarity we define the broadcast sponsor of tree T i as Msi , and the sponsor to broadcast the
bkeys in the updated tree as Ms. After merging the tree, the sponsor Ms updates its share and computes
all keys and bkeys in its key-path, it broadcasts then all bkeys in its key-path. All other members pick up
the bkeys in their co-paths from the broadcast message. Since all members have all bkeys in their co-path,
they can compute the new group key. In fact the broadcasted blinded session randoms of T 1 are never used.
However before the collection of all merge requests, nobody knows which tree is the highest, namely T 1.
So the communication costs can not be reduced.

The detailed process of merging m groups is illustrated in Protocol 5.5.

Protocol 5.5 (µSTR m-group merge)

1. Round 1: Every broadcast sponsor Msi broadcasts tree T i with all blinded session randoms. For i
with 1 ≤ i ≤ m:
Msi T i

si
(BR∗

si
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Round 2: Every member updates the tree by merging all merging trees.
The topmost leaf node of the deepest tree Mn will be selected as sponsor Ms. It additionally

• updates its session random rn and brn,
• computes ki and bki, ∀i ∈ [n, n + k − 1],
• broadcasts brn and bki,∀i ∈ [n, n + k − 1].

Mn {bkj |n ≤ j ≤ n + k − 1} ∪ {brn}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. The sponsor computes kn+k, each other member Mi:

• if i < n, picks up brn and computes kj for n ≤ j ≤ n + k,
• if i > n, picks up bki−1 and computes recursively kj for i ≤ j ≤ n + k,

The example in Figure 5.1 illustrates an example of merge with 3 trees. First the broadcast sponsors Ms1 ,
Ms2 , and Ms3 broadcast the trees T 1, T 2, and T 3 with all blinded session randoms respectively. Since M4 is
the topmost member in the original tree T 1, it is chosen as the sponsor. After the update of its share and the
computation of keys and bkeys in its key-path, M4 broadcasts br4, bk4, bk5, bk6, bk7, and bk8. The members
in original tree T 1, M1,M2, and M3, picks up br4, and Ml, l > 4 picks up bkl−1. Now all members have
enough bkeys and can compute the group key.

The complexity characteristics of m-group merge protocol are summarized in Table 5.4.
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Figure 5.1.: An example of µSTR merge

Rounds 2
Bcasts m + 1

Muls/Mi 2k + 1 for Mn

k + 1 for Mi, i < n
n + k + 1− i for Mi, i > n

Bcast size 2n + k + 1
All Muls k2+(2n+3)k+2n

2
Serial Muls 3k + 1
Remark: n(k): number of members in the group with highest tree(all other groups), m:
number of merging groups

Table 5.4.: Complexity of µSTR m-group merge protocol

5.2.5. Partition protocol

In the partition protocol we remove some blinded keys from the broadcast message. The criteria to update
the tree and to choose the sponsor is the same as in Section 4.3.5. After update of the tree, the sponsor
updates its session random and blinded session random, it computes then all keys and bkeys in its key-path.
It broadcasts then all bkeys in its key-path, instead of the updated tree with all bkeys.

Let Ms be the sponsor, n be the size of initial group, and p be the number of leaving members. The
detailed process is illustrated in Protocol 5.6.

Protocol 5.6 (µSTR partition)

1. Round 1: Every member updates the tree by removing all leaving members.
The sponsor Ms additionally,

• updates its session random rs and blinded session random brs,
• computes newly ki and bki, ∀i ∈ [max(2, s), n− p− 1],
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• broadcasts brs and bki, i ∈ [max(2, s), n− p− 1].

Ms {bkj |max(2, s) ≤ j ≤ n− 1} ∪ {brs}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. The sponsor computes kn−p, each other member Mi,

• if i < s, picks up brs and computes kj , ∀j ∈ [s, n− p],
• if i > s, picks up bki−1 and computes kj , ∀j ∈ [i, n− p].

Looking at the example in Figure 4.9, in the resulted tree with four members. The sponsor M3 updates
r3 and br3, after the computation it broadcasts br3 and bk3. M1 and M2 pick up then br3 from the message,
and M4 picks up bk3.

The complexity characteristics of partition protocol are summarized in Table 5.5.

s = 1 s ≥ 2
Rounds 1 1
Bcasts 1 1

Muls/Mi 2m− 3 for sponsor 2(m− s) + 1 for sponsor
m− i + 1 for other members m− i + 1 for Mi with i > s

m + 1− s for Mi with i < s
Bcast size m− 1 m− s + 1
All Muls m2+3m−6

2
m2+3m−s−s2

2
Serial Muls 3m− 5 3(m− s) + 1
Remark: p: number of leaving members, m := n − p, LNs: sponsor in updated tree

Table 5.5.: Complexity of µSTR partition protocol

5.2.6. Refresh protocol

In CLIQUES, the member Mr which is the least recent to have refreshed its key share generates a new share
r̂r and broadcasts the updated information. However, it is difficult to manage the last refresh time of all
members, and if the tree structure is changed, no refresh is needed. Hence we define the refresh policy as
follows: first a maximal allowed interval with the same group key should be configured. If the tree structure
is within this interval unchanged, then the rightmost member (in STR is always Mn) executes the refresh
protocol.

The size of the broadcast message can be reduced by removing the unnecessary blinded keys. The detailed
process is illustrated in Protocol 5.7.

Protocol 5.7 (µSTR refresh)

1. Round 1: The refresher Mr

• updates its session random rr and brr,
• computes (ki, bki) for r ≤ i ≤ n− 1,
• broadcasts bkmax(2,r), · · · , bkn−1, brr.

Mr bkmax(2,r), · · · , bkn−1, brr
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. The refresher computes kn, and each other member Mi,

• if i < r, picks up brr and computes kj , ∀j ∈ [r, n],
• if i > r, picks up bki−1 and computes kj , ∀j ∈ [i, n].

The complexity characteristics of refresh protocol are given in Table 5.6.
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r = 1 r ≥ 2

Rounds 1 1
Bcasts 1 1

Muls/Mi 2n− 3 for refresher 2(n− r) + 1 for refresher
n− i + 1 for another members n− i + 1 for Mi with i > r

n− r + 1 for Mi with i < r
Bcast size n− 1 n− r + 1
All Muls n2+3n−6

2
n2+3n−r−r2

2
Serial Muls 3n− 5 3(n− r) + 1
Remark: LNr: refresher

Table 5.6.: Complexity of µSTR refresh protocol

5.3. µTGDH Protocol Suite

The TGDH protocol suite described in Section 4.4 has some redundant information. We suggest in this
section an µTGDH key tree which contains only the necessary information. In fact a member Mi needs only
to know the blinded keys in its co-path and its own share and bkey. Looking at the setting in Figure 4.10,
only the bkeys of members M1 and M3, and internal node 〈1, 1〉 are necessary for member M2 to compute
the group key. To save the computational cost all keys in the key-path are also stored in the tree.

One of the major advantages of this key tree is to save memory costs. Assume that we have an µTGDH
tree with n members, and its height is h. A member associated with leaf node 〈l, v〉 stores l + 1 keys
k〈l−i,bv/2ic〉 for 0 ≤ i ≤ l, bk〈l,v〉, and l blinded keys in its co-path. Hence the memory costs is l + 1 keys
and l + 1 public keys. Compared to TGDH, µTGDH requires 2n − 2 − (l + 1) = 2n − l − 3 public keys
less to be saved.

Looking at the example in Figure 4.10, M2 stores only the keys in its key-path: k〈3,1〉, k〈2,0〉, k〈1,0〉, and
k〈0,0〉, and the following bkeys: bk〈3,1〉, bk〈3,0〉, bk〈2,1〉, and bk〈1,1〉.

With the µTGDH tree we introduce the following six optimized protocols.

5.3.1. Setup protocol

One of the improvements of setup protocol in µTGDH is that the sponsor of each sub-tree broadcasts only
the respective group key, instead of the whole tree with all blinded keys. It is because that after merge the
roots of both sub-trees become the children of the new root. Only the blinded key of the old root of one
sub-group is in the co-path of all members in another sub-group. With this optimization the cumulative
message size can be significantly reduced. The criteria to sort the members and to construct the tree is the
same as in TGDH.

Assume that n members wish to form a group, h is dlogn
2e. The detailed process is illustrated in Protocol

5.8.

Protocol 5.8 (µTGDH setup protocol)

1. Round 1: Every member Mi, i ∈ [1, n] broadcasts its setup-request with its blinded key
Mi M ′

is bkey
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Round 2: Every member sorts the members and forms the tree as described in Section 4.4.1. To save
the memory cost, it removes then all bkeys except those of itself and of its sibling.
Every member 〈l, v〉 with odd v, identifies the update-list consisting of nodes whose bkeys are to be
computed and update by it: {〈l − i, v/2i〉|1 < i < l, bv/2i−1c is odd and either bv/2i−2c is odd
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or 〈l, v〉 is leaf node)}. Every member computes then the key of its parent, the member with odd v
computes additionally the bkey of its parent, broadcasts it, and removes its parent from the update-list.

3. Round 3 to h: Every member picks up the bkeys in its co-path and computes the keys in its key-path as
far as possible. If there are members in the update-list, the member tries to compute the bkeys of those
members. The newly computed bkeys are broadcasted and the respective nodes are removed from the
upate-list.

4. Now every member has all bkeys in its co-path and computes the group key.

Looking at the example in Figure 4.11. After the tree structure is constructed, the members remove the
redundant bkeys. As the result, M1 and M2 store the bkeys bk〈3,0〉 and bk〈3,1〉, M3 and M4 store the bkeys
bk〈3,2〉 and bk〈3,3〉, and M5 and M6 store the bkeys bk〈2,2〉 and bk〈2,3〉. Since M1, M3, M5 have even v, they
do not need to compute and broadcast any bkeys. The update-list of M2 is {〈2, 0〉}, of M4 is {〈2, 1〉, 〈1, 0〉},
and of M6 is {〈1, 1〉}.

Every member computes then the key of its parent. M2, M4, and M6 compute additionally the bkeys of
their parents respectively. The newly computed bkeys bk〈2,0〉, bk〈2,1〉, and bk〈1,1〉 are broadcasted by M2,
M4, and M6 respectively, and the corresponding nodes are removed from the update-list. Now only M4

have nodes in its update-list.
In the third round, M1 and M2 pick up bk〈2,1〉 and bk〈1,1〉, M3 and M4 pick up bk〈2,1〉 and bk〈1,1〉. M1,

M2, M3, and M4 compute then the key of 〈1, 0〉. Since 〈1, 0〉 is in M4’s update-list, it computes additionally
bk〈1,0〉, broadcasts it and removes 〈1, 0〉 from the update-list. Since bk〈1,1〉 is broadcasted in the last round,
they can compute the group key.

Equipped with the message from M4 in the third round, M5 and M6 pick up bk〈1,0〉 and can compute the
group key.

The complexity characteristics of setup protocol are summarized in Table 5.7.

Rounds h
Bcasts h2 − h + n

Muls/〈l, v〉 l +1+ i, where i is the least non-negative integer so
that b v

2i c is even. If 〈l, v〉 is the shallowest rightmost
leaf node in the finally formed tree, it is l + i.

Bcast size h2 − h + n
Serial Muls 2h− 1
Remark: h = dlog2 ne

Table 5.7.: Complexity of µTGDH setup protocol

5.3.2. Join protocol

The criteria to update the tree and to choose the sponsor is the same as in TGDH. The join protocol is
improved by broadcasting the updated tree with only the blinded keys in the sponsor’s key-path and in the
new member’s co-path, instead of all blinded keys. The advantage is to save the communication cost. Surely
only the new member need the updated key structure, and the tree can be unicasted to the new member.
However, one more message is needed. Hence we encapsule both into one message. It can be further
optimized that all other members in initial tree except the sponsor do not need to store the bkey of the new
member. The detailed process is illustrated in Protocol 5.9.
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Protocol 5.9 (µTGDH join protocol)

1. Round 1: The new member broadcasts its join-request with its blinded key
Mn+1 bkey of new member

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Round 2: Every member

• updates the key tree,
• removes all keys and bkeys in the sponsor’s key-path.

The sponsor Ms additionally

• updates its share,
• computes all keys and bkeys in its keypath,
• broadcasts the updated tree T̂s with all bkeys in its key-path and in the new member’s co-path.

Ms T̂s(KpBK∗
s ∪ CoBKn+1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

3. Every member Mi picks up bkeys in its co-path from the message, computes then the keys in its key-
path.

Looking at the example in Figure 4.12, the sponsor M3 broadcasts the updated tree with only the bkeys
bk〈2,2〉, bk〈1,1〉, and bk〈1,0〉. M1 and M2 pick up then bk〈1,1〉, the new member M4 reconstructs first the
updated tree and picks up the bkeys bk〈2,2〉 and bk〈1,0〉. Now all members can compute the group key. After
finishing the join protocol, the bkeys stored by M1 and M2 are bk〈2,0〉, bk〈2,1〉, and bk〈1,1〉, by M3 and M4

are bk〈2,2〉, bk〈2,3〉, and bk〈1,0〉.
The complexity characteristics of the join protocol are summarized in Table 5.8.

Rounds 2
Ucasts 0
Bcasts 2

Muls/〈l, v〉 2ls − 1 for sponsor,
ls + 1− i, ∃i ∈ [0, ls] so that Mj ∈ T〈ls−i,vs/2i〉\T〈ls−i+1,vs/2i−1〉

Ucast size 0
Bcast size ls + 1

Serial Muls 3ls − 2
Remark: 〈ls, vs〉 : sponsor in updated tree

Table 5.8.: Complexity of µTGDH join protocol

5.3.3. Leave protocol

The criteria to update the tree and to choose the sponsor is the same as in TGDH. In leave protocol of TGDH,
the updated tree together with all bkeys are broadcasted by the sponsor. However, since all remaining
members know the old key and they can form the new tree, no tree are needed to be sent. Furthermore,
only the bkeys in the sponsor’s key-path are needed. As the result, after the update of the tree and the
computation of key-pairs, the sponsor broadcasts only the bkeys in its key-path. The detailed process is
illustrated in Protocol 5.10.

Protocol 5.10 (µTGDH leave protocol)

1. Round 1: Each member
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• removes the leaving member node and the relevant parent node,
• removes all keys and bkeys in the sponsor’s key-path.

The Sponsor Ms additionally,

• updates its share,
• computes then all keys and bkeys in its key-path,
• broadcasts all blinded keys in its key-path.

Ms KpBK∗
s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Every member Mi picks up CoBK∗
i ∩KpBK∗

s (in fact only one blinded key), and computes then the
keys in its key-path.

Looking at the example in Figure 4.13, the sponsor M3 needs only to broadcast bk〈1,1〉. Equipped with
bk〈1,1〉 M1 and M2 can compute the group key.

The complexity characteristics of leave protocol are summarized in Table 5.9.

Rounds 1
Ucasts 0
Bcasts 1

Muls/〈l, v〉 2ls − 1 for sponsor,
ls + 1− i if ∃i ∈ [0, ls] so that Mj ∈ T〈ls−i,vs/2i〉\T〈ls−i+1,vs/2i−1〉

Ucast size 0
Bcast size ls

Serial Muls 3ls − 2
Remark: 〈ls, vs〉 : sponsor in updated tree

Table 5.9.: Complexity of µTGDH leave protocol

5.3.4. Merge protocol

The criteria to update the tree and to choose the sponsors is the same as described in Section 4.4.4. In
the original merge protocol, the sponsor broadcasts always the updated tree with all blinded keys, which
consumes too much bandwidth. It is improved in µTGDH by sending only the newly computed bkeys, and
the bkeys of the sponsors are not broadcasted. Therefor the sponsors’ bkeys are not removed from the tree,
unlike in TGDH.

Another improvement is that each sponsor identifies its update-list. The algorithm to find such nodes
is described in Algorithm 5.1. The example can be found in Section 5.3.5. With the application of this
algorithm some redundant computation and messages can be reduced.

Algorithm 5.1 (Identifies update-list in µTGDH)
Input: Sponsor Ms (〈ls, vs〉), other sponsors otherSponsors

Output: Update-list of Ms.

List identifyUpdateList(Sponsor M_s, Collection otherSponsors){
List updateList;
IF(in protocol partition)

Add Ms to updateList
END IF
l = l_s - 1
v = v_s / 2
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WHILE(l > 0)

IF(any members in otherSponsors in T_<l+1,2v+1>)
IF(Ms is the rightmost sponsor in T_<l+1,2v+1>)

add <l, v> to updateList
ELSE

return updateList
END IF

ELSE
return updateList

END IF
l = l - 1
v = v / 2

END WHILE
return updateList

}

Assume that m groups wish to merge to a common group. The detailed process of merge is illustrated in
Protocol 5.11.

Protocol 5.11 (µTGDH merge protocol)

1. Round 1: Each sponsor Msi of tree T i for 1 ≤ i ≤ m:

• updates its share,
• computes all keys and bkeys in its key-path (including bk〈0,0〉),

• broadcasts updated tree T̂ i
si

including all bkeys in its key-path.

Msi T̂ i
si

(KpBK∗
si

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Round 2: Each member in tree T i removes the keys and bkeys in Msi’s key-path, and picks up the
bkeys in its co-path from the message broadcasted by Msi .
Each member updates the tree and identifies the sponsors. Then all keys and bkeys, from the parents
of all sponsors up to the root, are removed.
Each sponsor identifies its update-list. The sponsor with not empty update-list computes the keys in its
key-path as far as possible and broadcasts the newly computed bkeys, then removes the corresponding
nodes from the update-list.
Mst newly computed bkeys

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. Round 3 to q (q ≤ dlogm
2 e + 1, after this round the update-list of the rightmost sponsor becomes

empty.):
Each member picks up the bkeys in its co-path from the update messages, and computes the missing
keys in its key-path as far as possible. The member with not empty update-list try to compute the bkeys
of nodes in its update-list. The newly computed bkeys are broadcasted and their corresponding nodes
are removed from the update-list.
Mst newly computed bkeys

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

4. Each member picks up the bkeys in its co-path from the message broadcasted by the rightmost sponsor
and computes then all missing keys up to the group key in its key-path.

The complexity characteristics of merge protocol are summarized in Table 5.10.
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m = 2 m ≥ 3

Rounds 2 dlog2 me+1
Bcasts 3 2m

Muls/〈l, v〉 The same as in Table 4.19 except that µ = 2l′sk

if 〈l, v〉 is sponsor 〈l′sk
, v′sk
〉

Bcast size h + α + ĥ + 2 h + α + mĥ

Serial Exps 3·max(l′s1
, l′s2

)+3ĥ− 4 3·max(l′s1
,· · · ,l′sm

)+(3ĥ− 4)
Remark: α: sum of the height of all groups except T 1, 〈l′sk

, v′sk
〉 with 1 ≤ k ≤ m:

sponsor of tree T k before merge, 〈lsk , vsk 〉 with 1 ≤ k ≤ t: sponsor of operation
merge.

Table 5.10.: Complexity of µTGDH merge protocol (worst case)

5.3.5. Partition protocol

The criteria to update the tree and to choose the sponsor is the same as described in Section 4.4.5. Similar
to the merge protocol of µTGDH, the following improvements is applied: Each sponsor identifies first its
update-list using Algorithm 5.1. With this improvement each new bkey is only computed and broadcasted
one time, while in TGDH the same bkey can be done by multiple sponsors.

Assume that p members leave the group, the height of the updated tree is ĥ. The detailed process of
partition protocol is illustrated in Protocol 5.12.

Protocol 5.12 (µTGDH partition protocol)
1. Round 1: Each member

• updates key tree by deleting all leaving member nodes and their parent nodes,
• removes all keys and bkeys from the parent nodes of sponsors nodes up to the root, and the bkey

of the rightmost sponsor.

Each sponsor identifies then the update-list using Algorithm 5.1.
Each sponsor computes the keys in its key-path as far as possible and broadcasts the newly computed
bkeys, then removes the corresponding nodes from the update-list.
Mst the sponsor′s bkey and newly computed bkeys

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Round 2 to q (q ≤ min(dlog2 pe+ 1, ĥ), after this round all update-lists become empty.):
Each member picks up the bkeys in its co-path from the update messages, and computes the missing
keys in its key-path as far as possible. The member with no empty update-list tries to compute the
bkeys of the nodes in the list. The newly computed bkeys are broadcasted and their corresponding
nodes are removed from the update-list.
Mst newly computed bkeys

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. Each member picks up the bkeys in its co-path from the message broadcasted by the rightmost sponsor
and computes then all missing keys up to the group key in its key-path.

Looking at the example in Figure 4.15. From the view of members in T̂4, the sponsors are M2, M4, and
M6. The update-list of M2 consists of the node of M2. The node of M4 and 〈1, 0〉 are in M4’s update-list.
The nodes in M7’s update-list are 〈2, 3〉 and 〈1, 1〉.

In the first round, since M2 and M4 do not know the bkeys of each other, they broadcast the bkeys. M7

updates its share and computes the key and bkey of 〈1, 1〉, then the bkeys bk〈2,3〉 and bk〈1,1〉 are broadcasted.
After this round, only M4’s update-list is not empty. Hence it must compute and broadcast bk〈1,0〉. Now all
members have all bkeys in their co-paths respectively, and can compute all keys in their key-paths.

The complexity characteristics of partition protocol (worst case) are summarized in Table 5.11.
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Rounds min(dlog2 pe+ 1, ĥ)
Ucasts 0
Bcasts 2min(2p,dn2 e)

Muls/〈l, v〉 The same as in Table 4.20 except that the rightmost
sponsor needs one multiplication less.

Ucast size 0
Bcast size (ĥ + 1)·min(2p,dn2 e)

Serial Muls 3ĥ− 2
Remark: p: number of leaving members

Table 5.11.: Complexity of µTGDH partition protocol (worst case)

5.3.6. Refresh protocol

We use the policy as described in 5.2.6. The rightmost member refreshes its share and computes all keys and
bkeys in its key-path, and then broadcasts all bkeys in its key-path. Each other member picks up the bkeys
in its co-path from the broadcast message and computes then all missing keys in its key-path.

The detailed process of refresh protocol is illustrated in Protocol 5.13.

Protocol 5.13 (µTGDH refresh protocol)

1. Round 1: The refresher Mr

• updates its key and bkey,
• computes newly all keys and bkeys in its key-path,
• broadcasts all bkeys in its key-path.

Mr KpBK∗
r−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Each member Mi except the refresher:

• removes all keys and bkeys from the refresher Mr to the root,
• picks up CoBK∗

i ∩KpBK∗
r (in fact only one bkey),

• computes all missing keys in its key-path.

The complexity characteristics are summarized in Table 5.12.

Rounds 1
Ucasts 0
Bcasts 1

Muls/〈l, v〉 2lr − 1 for refresher,
lr + 1− i, ∃i ∈ [0, lr] so that Mj ∈ T〈lr−i,vr/2i〉\T〈lr−i+1,vr/2i−1〉

Ucast size 0
Bcast size lr

Serial Muls 3lr − 2
Remark: 〈lr, vr〉 : refresher

Table 5.12.: Complexity of µTGDH refresh protocol
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5.4. TFAN Protocol Suite

In this section we propose a Tree-based group key agreement Framework for Ad-hoc Networks (TFAN)
based on the protocol suites µSTR and µTGDH. The structure of TFAN depends on two parameters: the
maximal height (m) and the art (art) of main-sub-tree(ms-tree)s (defined below). The parameter art deter-
mines the ms-tree’s art: S for an µSTR tree or T for an µTGDH tree. Besides the symbols in Figures 4.1
and 4.2 the following symbols are used for TFAN.

h height of TFAN tree
m maximal allowed height of ms-trees

MNi ith main-node, 0 ≤ i ≤ h
MTi ith ms-tree, a subtree rooted at the right child of MNi

MT u
〈l,v〉 a subtree rooted at node 〈l, v〉 in MTu, used only if art = T

SNi ith sub-root, the root of MTi

ki key associated with main-node MNi

bki blinded key associated with main-node MNi

mki key associated with SNi

mbki blinded key associated with SNi

MBK∗
i set of Mi’s blinded keys of sub-roots

k〈i,〈l,v〉〉 key of the node 〈l, v〉 in ms-tree MTi of art T .
bk〈i,〈l,v〉〉 blinded key of the node 〈l, v〉 in ms-tree MTi of art T .

r〈i,l〉 key of the internal node INl in ms-tree MTi of art S.
br〈i,l〉 blinded key of the internal node INl in ms-tree MTi of art S.
k〈i,l〉 session random of the leaf node LNl in ms-tree MTi of art S.

bk〈i,l〉 blinded session random of the leaf node LNl in ms-tree MTi of art S.

Figures 5.2 and 5.3 give examples of TFAN trees with µSTR and µTGDH trees as the ms-trees respec-
tively. Unlike in µSTR protocol suite, the internal and leaf nodes of µSTR ms-trees are numbered in inverse
direction starting with 0. The root is the topmost node. The nodes MN0, · · · , MNh are called main-nodes.
A main-node MNi has always two children: the deeper main-node MNi+1 as the left child and the root
of MTi as the right child. The only exception is MNh, it is also the root of MTh. An ms-tree MTi is an
µTGDH or µSTR tree. It roots at the right child of the main-node MNi. The root of MTi is ith sub-root,
denoted SNi. An µTGDH ms-tree has at most 2m members, and an µSTR ms-tree m + 1 members.

The key of a main-node MNi is denoted ki, and the blinded key bki. Considering first a tree with µTGDH
ms-trees, the key associated with node 〈l, v〉 in ms-tree MTi is denoted k〈i,〈l,v〉〉, and the corresponding
blinded key is bk〈i,〈l,v〉〉. Considering now a tree with µSTR ms-trees, the key and blinded key associated
with internal node INi in ms-tree MTl are denoted k〈i,l〉 and bk〈i,l〉, respectively. Similarly the session
random and blinded session random associated with leaf node LNl in ms-tree MTi are denoted r〈i,l〉 and
br〈i,l〉, respectively. For sake of clarity, we define the key and blinded key associated with SNi to be mki

and mbki respectively.
The path from member Mi to the root is called Mi’s key-path. And the path from Mi to the root of the

ms-tree where Mi locates is denoted Mi’s ms-key-path. KG = k0 at the root is the group secret shared
by all members. We note that KG is never applied as a cryptographic key for the purposes of encryption,
authentication or integrity. Instead, such special purpose sub-keys are derived from the KG, such as using a
one-way hash function h(·): k = h(KG).

A TFAN tree can be considered as an µSTR tree whose members are the whole ms-trees. Like in µSTR
and µTGDH, to compute the group key the member Mi must know all blinded keys (and blinded session
randoms) in its co-path, namely CoBK∗

i .
The trees in Figures 5.2 and 5.3. The former uses µSTR trees, and the latter uses µTGDH trees with

maximal height m = 2 for the ms-trees. The roots in both trees are MN0. The main-nodes are MN0,
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MN0

MN1

SN2

IN1

M3

LN2

M2M1

LN1

LN0

SN0

IN1

M8

LN2

M7M6

LN1

LN0

SN1

LN1

M5M4

LN0

MT1

(r〈2,1〉,br〈2,1〉)(r〈2,2〉, br〈2,2〉)

(k〈2,1〉,bk〈2,1〉)

(mk0, mbk0)

(k1,bk1)

(k0, -)

(mk2,mbk2)

h = 2

Figure 5.2.: A TFAN tree (art = S, m = 2)

MN0

SN1

〈1, 1〉〈1, 0〉

MN1

SN2

〈1, 1〉〈1, 0〉

〈2, 1〉〈2, 0〉 〈2, 2〉 〈2, 3〉

M2M1 M3 M4

M5 M6

MT1

SN0

〈1, 1〉〈1, 0〉

〈2, 1〉〈2, 0〉 〈2, 2〉 〈2, 3〉

M8M7 M9 M10

(k〈2,〈2,0〉〉,
bk〈2,〈2,0〉〉)

(k〈2,〈1,0〉〉,
bk〈2,〈1,0〉〉)

(mk2,mbk2)

(k1, bk1)

(k0, -)

(mk0,mbk0)

MT 0
〈1,1〉

h = 2

Figure 5.3.: A TFAN tree (art = T , m = 2)

MN1, and MN2. Hence the height is h = 2, and there are 3 ms-trees: MT0, MT1, and MT2. The ms-tree
MT1 is illustrated in the figures. Since m = 2, at most m + 1 = 3 members are allowed in the ms-tree in
Figure 5.2, and 2m = 4 members in Figure 5.3. Some keys (session randoms) and their blinded values are
illustrated in the figures. The examples of some other symbols are listed below:

Figure 5.2 Figure 5.3
KEY ∗

5 {r〈1,0〉,mk1, k1, k0} {k〈1,〈1,0〉〉,mk1, k1, k0}
KpBK∗

5 {br〈1,0〉,mbk1, bk1} {bk〈1,〈1,0〉〉,mbk1, bk1}
CoBK∗

5 {br〈1,1〉, bk2,mbk0} {bk〈1,〈1,1〉〉, bk2,mbk0}
MBK∗

5 {mbk0,mbk1,mbk2} {mbk0,mbk1,mbk2}

Assume that there is a TFAN tree with µSTR ms-trees. Let Mx be the member associated with the leaf
node LNl in ms-tree MTi. We consider first the general case: Mx is located not in the deepest ms-tree, and
is not the greatest numbered leaf node in MTi. The following blinded session randoms and blinded keys
must be known to Mx: br〈i,j〉 for 0 ≤ j ≤ l, bk〈i,l+1〉, bki+1, and mbkj for 0 ≤ j ≤ i−1. And the following
keys and session randoms must be also stored by Mx: r〈i,l〉, k〈i,j〉 for 0 ≤ j ≤ l, and kj for 0 ≤ j ≤ i.
Hence the memory costs for Mx are i + l + 3 keys and public keys.

If Mx is the deepest leaf node in the deepest ms-tree, the memory costs for Mx are h + l + 1 keys and
public keys. Otherwise if Mx is in the deepest ms-tree or the deepest leaf node in its ms-tree, the memory
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costs for Mx are i + l + 2 keys and public keys.

Now we consider a TFAN tree with µTGDH trees as ms-trees. Again let Mx be the member associated
with leaf node 〈l, v〉 in ms-tree MTi. Assume that MTi is not the deepest ms-tree. There are i + l + 2 keys
in Mx’s key-path and i + l + 1 blinded keys in Mx’s co-path. Additionally Mx stores also its own blinded
key. Hence the memory costs for Mx is i + l + 2 keys and blinded keys. If Mx is in the deepest ms-tree, the
memory costs are i + l + 1 keys and blinded keys.

The group key in both examples are computed by M5 as follows 3:

• In Figure 5.2:

KG = k0=f(k1 ·mbk0)
=f(f(mk1 ·mbk2) ·mbk0)
=f(f(f(r〈1,0〉 · bk〈1,1〉) ·mbk2) ·mbk0)

• In Figure 5.3:

KG = k0=f(k1 ·mbk0)
=f(f(mk1 ·mbk2) ·mbk0)
=f(f(f(k〈1,〈1,0〉〉 · bk〈1,〈1,1〉〉) ·mbk2) ·mbk0)

The rest of this section describes the six protocols of the framework in details.

5.4.1. Setup

Assume that n members wish to form a group. At first each member broadcasts its blinded key (or blinded
session random) with some other information required by the protocol. The nodes can be sorted as follows:
M1, · · · , Mn, according to some criteria, e.g. the nodes with more storage space and more powerful com-
putation ability are sorted before the other nodes. The nodes are then divided into dnb e blocks with block
length b = m + 1 if art = S, and b = 2m if art = TGDH . All blocks except the last block have each b
members, and the last block has the remaining members. The members in a block form a ms-tree. Hence
the height of the TFAN tree is h =

⌈
n
b

⌉
− 1.

Remark 1 The members in the same ms-tree perform then the setup protocol of µSTR if art = S or of
µTGDH if art = T with the following modification: in µSTR ms-tree the leftmost member computes and
broadcasts the bkey of the sub-root, while in µTGDH ms-tree it is done by the rightmost ms-tree.

After the members in MTh and MTh−1 receive bkeys of all sub-roots, they compute all absent keys in
their key-paths. The rightmost leaf node in the deepest ms-tree is chosen as the sponsor. It additionally
computes and broadcasts bkeys {bki|i ∈ [1, h − 1]}. Each member in ms-tree MTu with u ∈ [0, h − 2]
picks up the bkey bku+1 from the broadcast message. Now each member has all bkeys in its co-path so that
it can compute all missing keys up to the group key. The detailed process is illustrated in Protocol 5.14.

Protocol 5.14 (TFAN setup)

1. Round 1: Each member Mi, i ∈ {1, · · · , n} broadcasts a setup request with its own bkey:
Mi M ′

is bkey
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

2. Round 2 to q(q = 2 if art = S, and q = m + 1 if art = T ):
In round 2 the members are sorted and divided to several blocks as described in Remark 1. Then the
members in the same block execute the setup protocol (µSTR setup protocol for artS and µTGDH
setup protocol for artT ) with the modification described in Remark 1.

3Note that all blinded keys and session randoms are elliptic curve points.



100 Protocols for Ad Hoc Networks
3. Round q + 1: The sponsor, the rightmost member in the deepest ms-tree, computes then the missing

keys and bkeys of the main nodes in its key-path. It broadcasts then the changed bkeys. 4

4. Each member picks up the bkeys in its co-path from the broadcast message, and computes all missing
keys in its key-paths.

We consider first the example with art = S and m = 2 in Figure 5.4. All members broadcast first setup
requests with their bkeys. After the collection of all setup requests, the members are sorted according to
some criteria. Assume that there are 11 members and they are sorted as follows: M1, M2, · · · , M11. Since
at most 3 members are allowed in an ms-tree, all members are divided as follows: MT3 (M1,M2,M3),
MT2 (M4,M5,M6), MT1 (M7,M8,M9), MT0 (M10,M11). Now the members within an ms-tree execute
the µSTR setup protocol with the modification described in Remark 1.
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Figure 5.4.: An example of TFAN setup (art = S, m = 2)

The sponsor for the next round is M3. Since all members in MT3 and MT2 know all bkeys in their
co-paths respectively, all members in both ms-trees compute all keys in their key-paths respectively. The
sponsor M3 additionally computes and broadcasts bk3, bk2, and bk1. Equipped with this broadcast message,
the members in MT1 compute k1 and k0, and the members in MT0 compute k0.

Another example with art = T and m = 2 is given in Figure 5.5. After broadcasting blinded keys in the
first round, all members in the same ms-tree execute the setup protocol of µTGDH. The rightmost sponsors
in each ms-tree: M4, M8, M12 and M14, compute and broadcast mbk3, mbk2, mbk1 and mbk0, respectively.

Upon receiving the broadcasted messages, all members in MT1 and MT0 computes the keys in their
respective ms-key-paths. All members in MT3 and MT2 except M4 compute all keys in their key-paths
respectively. M4 is the sponsor for next round, it computes first (k2, bk2) and (k1, bk1), broadcasts then bk2

and bk1. Finally all members compute all missing keys in their respective key-paths.
The complexity characteristics except the number of multiplications per member are summarized in Table

5.13.
If art = S, let Mx be leaf node LNi in MTu for 0 ≤ u ≤ h, and assume that h ≥ 2. The numbers of

multiplications per members are listed below:

1. If i = m: 2m + min(h, u + 1);

2. If i = 0 ∧ u = h: 2h− 1;

3. Else: i + 1 + min(h, u + 1).
4The members in the deepest two ms-trees know till this round all bkeys in their co-paths, so they can compute the keys of the

main nodes in their key-paths in parallel.
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Figure 5.5.: An example of TFAN setup (art = T , m = 2)

art = S art = T

Rounds 3 m + 2
Bcasts n + h + 2 n + 1 + (m2 −m + 1)(h + 1)

Bcast size n + mh + m + h− 1 n + h− 1 + (m2 + m + 1)(h + 1)
Serial Muls 2m + h− 1+ 2m + 3h− 3

max(m, 2h− 2)

Table 5.13.: Complexity of TFAN setup protocol

If art = T and h ≥ 2, let Mx be leaf node 〈l, v〉 in MTu for 0 ≤ u ≤ h (l = m for 1 ≤ u ≤ h). The
numbers of multiplications per member are listed below:

1. If Mx is 〈m, 2m − 1〉 in MTh: 2m + 2h− 1;

2. Else: l + 1 + i + min(h, u + 1), where i is the least non-negative integer so that b v
2i c is even.

5.4.2. Join

Assume that the group has n members {M1, · · · , Mn}, and the new member Mn+1 wishes to join. Mn+1

broadcasts a join request with its bkey. Each member in current group receives this request and determines
the insertion position. It finds first the shallowest not fully filled ms-tree. Assume that this ms-tree is MTi.
The join event is then processed according to the join protocol of µSTR if art = S or of µTGDH if art = T
with the extension that the sponsor computes all keys and bkeys in its key-path except k0.

If all ms-trees are fully filled, a new ms-tree with the new member as its unique member and a new
main-node are created. The new main-node becomes the new root of the TFAN tree with the old root as its
left child and the root of the new ms-tree as its right child. The shallowest rightmost leaf node in MT1 (in
updated tree) is chosen as the sponsor Ms. The detailed process is illustrated in Protocol 5.15.

Protocol 5.15 (TFAN join)

1. Round 1: The new member Mn+1 broadcasts its own bkey.
Mn+1 new member′s bkey

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Round 2: Every member

• updates the tree by inserting the new member,
• removes all keys and bkeys in the key-path of the sponsor.
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The sponsor Ms additionally,

• updates its key and bkey,
• computes all keys and bkeys in its key-path except k0,
• broadcasts all bkeys in its key-path.

Ms KpBK∗
s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

3. The sponsor computes k0, each other member Mi picks bkeys in its co-path and computes the keys in
KEY ∗

i ∩KEY ∗
s .

We consider first the example with µSTR ms-trees in Figure 5.6. Since MT1 is not fully filled and all
ms-trees above it (here only MT0) are fully filled, M9 joins in MT1. M5 is the sponsor. All members
(except M5 and M9) remove all keys and bkeys in M5’s key-path. Equipped with the broadcast message
from M5,

• M1, M2, and M3 compute k1 and k0,

• M4 computes k〈1,1〉,mk1, k1 and k0,

• M9 computes mk1, k1 and k0,

• M6, M7, and M8 compute k0.

Another example with µTGDH ms-trees is given in Figure 5.7. The new member M11 joins into MT1

and M6 is the sponsor. The process is similar as the example in Figure 5.6.
The complexity characteristics except the multiplications per member are summarized in Table 5.14.

art = S art = T

Rounds 2 2
Bcasts 2 2

Bcast size 4 + min(us, h− 1) ls + 1 + min(us, h− 1)
Serial Muls 7 + 3min(us, h− 1) 3ls + 3min(us, h− 1) + 1
Remark: MTus : the ms-tree containing the sponsor, 〈ls, vs〉:
the sponsor’s index in MTus

Table 5.14.: Complexity of TFAN join protocol
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Figure 5.6.: A TFAN join (art = S, m = 2)

If art = S, let Mx be leaf node LNi in MTu for 0 ≤ u ≤ h. The numbers of multiplications per member
are listed below:
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Figure 5.7.: A TFAN join (art = T , m = 2)

• Sponsor: 2min(us, h− 1) + 3;

• New member: min(us, h− 1) + 2;

• Other members in MTus : min(us, h− 1) + 3;

• If u > us: us + 1;

• If u < us: u + 1.

If art = T , let Mx be leaf node 〈l, v〉 in MTu for 0 ≤ u ≤ h. The numbers of multiplications per
member are listed below:

1. Sponsor: 2ls + 1 + 2min(us, h− 1);

2. Other members in MTus : ls + 1 − i + min(us, h − 1), ∃i ∈ [0, ls] so that Mj ∈ MT us

〈ls−i,vs/2i〉 \
MT us

〈ls−i+1,vs/2i−1〉;

3. If u > us: us + 1;

4. If u < us: u + 1.

5.4.3. Leave

Assume that we have a group with n members, and Ml in ms-tree MTi leaves the group. If Ml is the only
member in ms-tree MTi, the shallowest rightmost leaf node of Mi+1 if i ≥ 2, or of Mh−1 if i = h, is
chosen as the sponsor. The leave of member in MTi is processed according to the leave protocol of µSTR
if art = S or of µTGDH if art = T . The sponsor updates its share and computes all keys and bkeys in its
key-path except k0. The detailed process is illustrated in Protocol 5.16.

Protocol 5.16 (TFAN leave)

1. Round 1: Each member

• updates the tree by removing the leaving member and respective parent node,
• removes all keys and bkeys in the key-path of the sponsor.

The sponsor Ms additionally,

• updates its key and bkey,
• computes all keys and bkeys in its key-path except k0,
• broadcasts all bkeys in its key-path.

Ms KpBK∗
s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗
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2. The sponsor computes k0, each other member Mi picks up bkeys in its co-path and computes the keys

in KEY ∗
i ∩KEY ∗

s .

We consider first the example with µSTR ms-trees in Figure 5.8. M5 leaves the group. M4 is the sponsor,
since it is directly below M5. M4 first updates its new share and computes (mk2,mbk2), (k2, bk2), and
(k1, bk1), and then broadcasts br〈2,1〉,mbk2, bk2, and bk1. Equipped with the broadcast message from M4,
M6 computes mk2, k2, k1 and k0. All members in MTu with u ∈ {0, 1, 3} computes ki for 0 ≤ i ≤ u. If
M7, instead M5, leaves the group, M6 is chosen as the sponsor, and MT1 and MN1 are removed from the
tree.

MN0

MN2

SN3

IN1

M3

LN2

M2M1

LN1

LN0

SN0

IN1

M10

LN2

M9M8

LN1

LN0SN2

LN2

M5M4

LN1

M6

LN0LN1

MN1

SN1

MN0

MN2

SN3

IN1

M3

LN2

M2M1

LN1

LN0

SN0

IN1

M10

LN2

M9M8

LN1

LN0SN2

LN1

M4 M6

LN0

MN1

SN1

M7 M7

Sponsor

Figure 5.8.: A TFAN leave (art = S, m = 2)

Another example with µTGDH ms-trees is illustrated in Figure 5.9, where member M8 leaves the group.
According to the leave protocol of µTGDH, M8 and its parent 〈1, 1〉 are removed from the tree, and M7 is
chosen as the sponsor. M7 first updates its share and then computes (mk1,mbk1) and (k1, bk1). It broadcasts
then mbk1 and bk1. Equipped with the message from M7, members in MT2 (M1,M2,M3 and M4) compute
then k1 and k0, and those in MT0 (M9,M10,M11) compute k0. The members in M7’s ms-tree: M5 and
M6, compute mk0, k1 and k0.
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Figure 5.9.: A TFAN leave (art = T , m = 2)

The complexity characteristics except the number of multiplications per member are summarized in Table
5.14.

If art = S, let Mx be leaf node LNi in MTu for 0 ≤ u ≤ h. The numbers of multiplications per member
are listed below:

• Sponsor: 2s + 2min(us, h− 1) + 1;

• Non-sponsor in MTus : min(us, h− 1) + s + 2;
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art = S art = T

Rounds 1 1
Bcasts 1 1

Bcast size s + min(us, h− 1) + 3 ls + min(us, h− 1) + 2
Serial Muls 3s + 3min(us, h− 1) + 4 3ls + 3min(us, h− 1) + 4
Remark: MTus : the ms-tree containing the sponsor, LNs(〈ls, vs〉: the sponsor

Table 5.15.: Complexity of TFAN leave protocol

• If u > us: us + 1;

• Else: u + 1.

If art = T , let Mx be leaf node 〈l, v〉 in MTu for 0 ≤ u ≤ h. The numbers of multiplications per
member are listed below:

• 2ls + 2min(us, h− 1) + 3 for the sponsor,

• ls + 1− i + min(us, h− 1) if ∃i ∈ [0, ls] so that Mj ∈MT us

〈ls−i,vs/2i〉 \MT us

〈ls−i+1,vs/2i−1〉 for other
members in MTus ,

• us + 1 if u > us,

• u + 1 if u < us.

5.4.4. Merge

Assume that m′ 5 groups wishes to merge into one group. In the setting of TFAN tree, only the members
in the deepest ms-tree know bkeys of all sub-roots. Hence the sponsor to broadcast the tree is from the
deepest ms-tree. The trees are sorted from the highest to the lowest tree: T 1, · · · , Tm′

. If two trees are of
the same height, some other criteria must be applied, e.g. lexicographical comparison of the identifiers of
the respective sponsors. The broadcast sponsor of tree T i is denoted Msi .

A TFAN tree can be considered as an µSTR tree with the whole ms-trees as its leaf nodes. Hence the
merge of TFAN can be processed according to the merge protocol of µSTR.

First each broadcast sponsor broadcasts its tree with bkeys of all sub-roots. After collection of all broad-
cast messages, each member first orders the merging trees, and then merges them. The shallowest rightmost
leaf node in the deepest ms-tree T 1 becomes the sponsor Ms for the next round. The keys and bkeys in the
sponsor’s key-path are removed from the key tree. The sponsor additionally updates its share and computes
all keys and bkeys in its key-path. The bkeys in key-path of Ms are then broadcasted. Equipped with this
message, each member computes the keys in its key-path and get the group key. The detailed process is
illustrated in Protocol 5.17.

Protocol 5.17 (TFAN merge)

1. Round 1: Each broadcast sponsor Msi for 1 ≤ i ≤ m′ broadcasts its tree with bkeys of all sub-roots.
Msi T i

si
{MBK∗

si
}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

2. Round 2: Each member

• updates its tree by merging all trees,
• removes all keys and bkeys in the key-path of the new sponsor.

The sponsor Ms additionally

• updates its share,
5Since m is used as the parameter of TFAN, m′ denotes the number of merging groups instead.
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• computes all keys and bkeys in its key-path except k0,
• broadcasts all bkeys in its key-path.

Ms KpBK∗
s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

3. The sponsor computes the group secret key k0, each other member Mi picks the bkey in its co-path
and computes the keys in KEY ∗

i ∩KEY ∗
s .

Since merge protocol behaves similar in both cases (art = S and art = T ), we consider in the following
only the example with art = S in Figure 5.10. There are two groups T 1 and T 2 with h = 3 and h = 2,
respectively. Hence T 2 is put on top of T 1. A new main-node MN1 is created with the root of T 1 as the
left child and the root of MT1 of T 2 as the right child. M8 updates its share and then computes all keys
and bkeys in its key-path except k0: (mk2,mbk2), (k2, bk2), and (k1, bk1). It then broadcasts mbk2, bk2

and bk1. Equipped with the broadcast message, M6 and M7 compute mk2, k2, k1, and k0. All members in
MTi,∀i ∈ {0, 1, 3} compute then all kj for 0 ≤ j ≤ i.

The complexity characteristics except the multiplications per member are summarized in Table 5.16.

art = S art = T

Rounds 2 2
Bcasts m′ + 1 m′ + 1

Bcast size h + 2α + m′ + 2 h + 2α + m′ + ls
Serial Muls 3α + 4 3ls + α + 1
Remark: h: height of T 1, α: sum of the height of all groups except T 1, m′: number of
merging groups

Table 5.16.: Complexity of TFAN merge protocol

If art = S, let Mx be leaf node LNi in MTu for 0 ≤ u ≤ h + α. The numbers of multiplications per
member are listed below:

• Sponsor (in MTα): 2α + 3;

• Non-sponsor in MTα: α + 2;

• If u > us: α + 1;

• If u < us: u + 1.

If art = T , let Mx be leaf node 〈l, v〉 in MTu for 0 ≤ u ≤ h + α. The numbers of multiplications per
member are listed below:

• 2ls + 2α + 1 for the sponsor (in MTα),

• α + ls + 2− i if ∃i ∈ [0, ls] so that Mj ∈ MTα
〈ls−i,vs/2i〉 \MTα

〈ls−i+1,vs/2i−1〉 for other members in
MTα,

• α + 1 if u > α,

• u + 1 if u < α.

5.4.5. Partition

Once again, we have a group of n members, and p of them leave the group, e.g. due to a network failure.
First we should identify the members to compute and broadcast the bkeys. Such sponsors who take part
in the partitions or leaves within the ms-trees are called ms-sponsors. The member who computes and
broadcasts the bkeys of the main-nodes is called sponsor. If all members in an ms-tree leave the group, the
ms-tree is removed from the TFAN tree. No ms-sponsors are needed for such events. Otherwise the leaving
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Figure 5.10.: A TFAN merge (art = S, m = 2)

of members in each ms-tree is processed using the partition protocol 6 of µSTR (if art = S) or µTGDH (if
art = T ), the corresponding sponsors in this phase are denoted by ms-sponsors.

The choice of the sponsor is some complex. If all members of the deepest modified ms-tree leave the
group, the sponsor is the rightmost member in the ms-tree directly under the removed ms-tree, or in the
greatest numbered remaining ms-tree if no ms-tree below it exists. In this case, after the collection of bkeys
of all sub-roots, the sponsor updates its share. If there are remaining members in the deepest modified ms-
tree then the sponsor is the rightmost ms-sponsor in the deepest modified ms-tree. It updates its share while
executing the partition protocol within the ms-tree. Then it computes the missing keys and bkeys of the
main-nodes and broadcasts the changed bkeys.

Now each member can pick up the missing bkeys in its co-path from the message and computes then all
missing keys in its key-path. The detailed process is illustrated in Protocol 5.18.

Protocol 5.18 (TFAN partition)

1. Round 1 to q (q = 1 for art = S, and q ≤ min(dlog2 pe+ 1, ĥ) for art = T ): Each member updates
the tree by removing the leaving members and respective parents.
In the remaining updated ms-trees members perform the leave or partition protocol of µSTR (if art =
S) or µTGDH (if art = T ) with the following modifications:

• each member removes the keys and bkeys from the sponsor up to the root, and from the parent of
other ms-sponsors up to the root.
• only the sponsor updates its share.
• and the rightmost sponsor in each modified ms-tree MTu computes all keys and bkeys in its

key-path and mbku, then broadcasts the changed bkeys in MTu.

2. Round q + 1: The sponsor Ms,
6If only one member in the ms-tree leaves the group, using the leave protocol instead.
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• updates its share if it is in an unchanged ms-tree,
• computes the missing keys and bkeys of the main-nodes in its key-path except the group key,
• broadcasts all changed bkeys in its key-path.

Ms changed bkeys in M ′
skey path

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M∗

3. The sponsor computes the group secret key k0,
Each other member Mi computes the keys in KEY ∗

i ∩KEY ∗
s .

Looking at the example with µSTR ms-trees in Figure 5.11. M6, M7, M8, and M10 leave the group. Since
there are no members other than M7 and M8 in MT1, MT1 and MN1 are removed. M5 is the ms-sponsor
for the leaving of M6. Another ms-sponsor is M9. Since M5 is at the same also the sponsor, it updates its
share and computes then mk1 and mbk1, and broadcasts br〈1,0〉 and mbk1. M8 computes mk0 and mbk0,
and broadcasts br〈0,1〉 and mbk0.

In the next round the sponsor M5 computes k1 and bk1, then broadcasts bk1. Now each member has all
bkeys in its co-path and can compute the all missing keys in its key-path.

Another example with µTGDH ms-trees is given in Figure 5.12. Since all members of MT1 (M8,M9)
leave the group, it is removed together with its parent MN1. According to the partition or leave protocol in
µTGDH, M5, M10 and M13 are the ms-sponsors for the leaving of M6, M11 and M13 respectively. M5 is
also the sponsor, hence it updates first its share and computes then all keys and bkeys in its ms-key-path and
broadcasts bk〈1,〈1,0〉〉 and mbk1. M10 and M13 broadcast first their bkeys respectively. M13 computes then
mk0 and mbk0, broadcasts then mbk0. The rest process is similar as in the example above.
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Figure 5.11.: A TFAN partition (art = S, m = 2)

Since the rounds and number of broadcast messages depend on the positions of leaving members, it is
difficult to estimate the concrete values. However, they are bounded by the height of ms-trees and the
number of leaving members. Since the cumulative message size in turn depends on the number of messages
and the positions of leaving members, it is not evaluated in partition. Similarly the number of multiplications
per member is also not evaluated. Onle the number of serial operations is provided. The other complexity
characteristics are summarized in Table 5.17. Except the rounds and the number of broadcast messages in
case art = S, all data are of the upper bound.
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Figure 5.12.: A TFAN partition (art = T , m = 2)

art = S art = T

Rounds 2 m
2 + 1

Bcasts t + 1 pm
2 + 1

Serial Muls 3m + 3us − 1 7 3m + 3us − 2 8

Remark: t: number of ms-sponsors, p: number of leaving members, MTus : ms-tree containing
the sponsor Ms, LNs(〈ls, vs〉: sponsor Ms

Table 5.17.: Complexity of TFAN partition protocol

5.4.6. Refresh

Again we have a group of n members and of height h. The member Mr, denoted the refresher, wishes to
update its share. The refresh-policy described in Section 5.2.6 can be also used in TFAN. The refresher
changes first its key and bkey, then updates all keys and bkeys in its key-path except k0, and broadcasts
all bkeys in its key-path. It then computes the new group key k0. After receiving the broadcast message,
each other member removes all keys and bkeys in Mr’s key-path, picks up the bkey in its co-path from the
message. Equipped with all bkeys in the co-path, all members can compute all missing keys in the key-path.
The detailed process is illustrated in Protocol 5.19.

Protocol 5.19 (TFAN refresh)

1. Round 1: The refresher Mr,

• updates its key and bkey,
• computes all keys and bkeys in its key-path except the group key,
• broadcasts all bkeys in its key-path.

Mr KpBK∗
r−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M∗

• The refresher computes the group secret key k0,each other member Mi picks up the bkey in its
co-path from the message and computes the keys in KEY ∗

i ∩KEY ∗
r .

The complexity characteristics except the number of multiplications per member are summarized in Table
5.18.

If art = S, let Mx be leaf node LNi in MTu for 0 ≤ u ≤ h. The numbers of multiplications per member
are listed below:

7This is for the case when the sponsor is one of the ms-sponsors, otherwise it is 3m + 3us + 2.
8This is for the case when the sponsor is one of the ms-sponsors, otherwise it is 3m + 3us + 3ls − 2.
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art = S art = T

Rounds 1 1
Bcasts 1 1

Bcast size r + min(ur, h− 1) + 3 lr + min(ur, h− 1) + 2
Serial Muls 3r + 3min(ur, h− 1) + 4 3lr + 3(min(ur, h− 1) + 4
Remark: MTur : the ms-tree containing the refresher, LNr(〈lr, vr〉: the refresher)

Table 5.18.: Complexity of TFAN refresh protocol

• Refresher: 2r + 2min(ur, h− 1) + 1;

• Non-refresher in MTur : min(ur, h− 1) + r + 2;

• If u > ur: ur + 1;

• If u < ur: u + 1.

If art = T , let Mx be leaf node 〈l, v〉 in MTu for 0 ≤ u ≤ h. The numbers of multiplications per
member are listed below:

• Sponsor: 2lr + 2min(ur, h− 1) + 3;

• Non-sponsor in MTur : lr + 1 − i + min(ur, h − 1) if ∃i ∈ [0, lr] so that Mj ∈ MT ur

〈lr−i,vr/2i〉 \
MT ur

〈lr−i+1,vr/2i−1〉;

• If u > ur: ur + 1;

• If u < ur: u + 1.

5.5. Complexity Analysis

This section analyzes the memory, communication, and computation costs between STR and µSTR, TGDH
and µTGDH, µSTR/µTGDH and TFAN. Since STR and TGDH use the Tree-based Diffie-Hellman (TbDH)
exchange in the algebraic group Z∗

p, but µSTR, µTGDH and TFAN use TbDH over groups of elliptic points,
denoted EC-TbDH. We assume that all protocols use EC-TbDH in order to achieve a fair comparison.

The notation in Figure 4.16 is used with the following modifications and extensions: m′ - number of
merging groups, and α - sum of heights of all non-highest TFAN trees. Additionally we use ht(ĥt) for the
height of the initial (updated) tree in (µ)TGDH to distinguish those in TFAN. The height h is not the same
in both cases of TFAN, i.e. in a fully filled TFAN tree, if art = S, h = d n

m+1e − 1, and if art = T ,
h = d n

2m e − 1.
Like in Section 4.5, we focus on the number of stored keys and bkeys, the number of rounds, the total

number of broadcast messages, the cumulative broadcast message size, and the serial number of multiplica-
tions.

First we gives an overview of the memory costs of all protocols in Table 5.19. We consider here random
TGDH trees and half fully filled TFAN trees, i.e. the number of members in each ms-tree is dm+1

2 e for
art = S and d2m−1e for art = T . In following we first compare the memory costs between STR and
µSTR, TGDH and µTGDH, and between µSTR/µTGDH and TFAN.

Table 5.20 gives an overview of communication and computation costs for STR, TGDH, µSTR, µTGDH,
and TFAN. We analyze the costs of all six protocols (setup, join, leave, merge, partition, and refresh)
between STR and µSTR, TGDH and µTGDH, and µSTR/µTGDH and TFAN.
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Protocol keys public keys

STR
per LNl n + 2−max(2, l) 2n− 2
average n+3

2 2n− 2

µSTR
per LNl n + 2−max(2, l) n + 1−max(2, l)
average n+3

2
n+1

2

TGDH
per 〈l, v〉 l + 1 2n− 2
average dlog2 ne+ 1 2n− 2

µTGDH
per 〈l, v〉 l + 1 l + 1
average dlog2 ne+ 1 dlog2 ne+ 1

TFAN per LNl in MTi i + l + 3 i + l + 3

(art = S) average
m+d n

m+1
e+5

2

m+d n
m+1

e+5

2

TFAN per 〈l, v〉 in MTi i + l + 2 i + l + 2
(art = T ) average 2m+d n

2m e+3

2

2m+d n
2m e+3

2

Table 5.19.: Memory costs of protocol suites STR, µSTR, TGDH, µTGDH and TFAN

5.5.1. STR vs. µSTR

5.5.1.1. Memory costs

Required memory space for the keys in both protocol suites (exact and average) is equal. The major ad-
vantage of µSTR compared to STR is reduced number of public keys that have to be stored. In STR each
member needs to store all public keys (bkeys and blinded session randoms), while in µSTR, only its own
blinded session random and the public keys in its co-path must be stored. For the member of leaf node LNl,
the storage space of n + l − 3 public keys can be saved in µSTR compared to STR.

5.5.1.2. Communication and computation costs

The computation costs in all protocols between STR and µSTR are contiguous. The only differences are
that in µSTR the group key is first computed by the sponsor after the broadcasting of the message, and that
the new share and its public value are picked up from the random-depot, but not generated and computed in
real time (precomputing). Hence in the following we analyze only the communication costs.

Setup Both protocols are contiguous. The only advantage of µSTR is that its message size is one less
than that of STR.

Join Both protocols need the same number of rounds and messages. Considering the total message size,
STR scales linearly in the number of members, while the total message size in µSTR is constant.

Leave, merge, partition, and refresh Both protocol suites need the same number of rounds and
messages. Considering the total message size, both protocol suites scale linearly in the number of the
remaining members. However µSTR needs only half message size than STR.

Summary As discussed above, µSTR protocols need much less memory costs than STR. µSTR requires
less serial computation time than STR, since random-depot (precomputing) is applied and the sponsor broad-
casts its message before it computes the group key. In protocol setup, the message size between STR and
µSTR is almost same. In all other protocols, µSTR needs much less message size than STR. Hence as a
whole, µSTR is more efficient than STR.
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5.5.2. TGDH vs. µTGDH

5.5.2.1. Memory costs

Similarly, required memory space for the keys in both protocol suites (exact and average) is equal. The
major advantage of µTGDH compared to TGDH is a smaller number of public keys that must be stored. In
TGDH each member must store all public keys (bkeys), while in µTGDH, only its own bkey and the bkeys
in its co-path must be stored. For the member 〈l, v〉 the storage space in µTGDH is 2n− l − 3 public keys
less than in TGDH.

Protocol Protocol Rounds Bcasts Bcast size Serial Muls
Suite

STR

setup 2 n + 1 2n − 1 3n − 2
Join 2 2 2n 6
Leave 1 1 n − 1 3n

2
m′-merge 2 m′ + 1 4(n + k) 3k + 3

−2m′ − 1
Partition 1 1 n − p 3(n−p)

2 + 3
Refresh 1 1 n 3n

2 + 3

TGDH

setup ht h2
t -ht+n (ht-2)2ht+2 2ht − 1

+n+8
Join 2 2 2n + 2 3ht

Leave 1 1 2n − 4 3ht

m′-merge dlog2 m′e+1 2m′ 2(m′+1)(n+ 3(ht+ĥt)-2
k)+m′(m′-2)

Partition min(ĥt, min(2p,dn
2 e) 2(n-p-1)· 3ĥt

dlog2 pe+1) min(2p,dn
2 e)

Refresh 1 1 2n − 2 3ht

µSTR

Setup 2 n + 1 2n − 2 3n − 4
Join 2 2 3 4
Leave 1 1 n

2
3n
2 − 2

merge 2 m′ + 1 2n + k + 1 3k + 1
Partition 1 1 n−p

2 + 1 3(n−p)
2 + 1

Refresh 1 1 n
2 + 1 3n

2 + 1

µTGDH

Setup ht n+h2
t -ht h2

t -ht+n 2ht − 1
Join 2 2 ht + 1 3ht − 2
Leave 1 1 ht 3ht − 2

m′-merge dlog2 m′e+1 2m′ ht+α+m′ĥt 3(ht+ĥt)-4
Partition min(ĥt, 2min(2p,dn

2 e) (ĥt+1)· 3ĥt − 2
dlog2 pe +1 min(2p,dn

2 e)
Refresh 1 1 ht 3ht − 2
Setup 3 n + h + 2 n+mh+ 2m+h-1+

m+h-1 max(m,2h-2)
Join 2 2 4 7

TFAN Leave 1 1 m+h
2

3(m+h)
2 +4

(art=S) Merge 2 m′ + 1 h+2α+m’+2 3α + 4
Partition 2 ĥ + 1 - 6m

Refresh 1 1 m+h
2 + 3 3(m+h

2 + 4
Setup m + 2 n+1+(m2- n+h-1+(m2+ 2m+3h-3

m+1)(h+1) m+1)(h+1)
Join 2 2 m + 1 3m + 1

TFAN Leave 1 1 m + h
2 + 2 3m + 3h

2 + 4
(art = T ) Merge 2 m′ + 1 h+2α+m’+m 3m + α + 1

Partition m
2 + 1 pm

2 + 1 - 6m
Refresh 1 1 m + h

2 + 2 3m + 3h
2 + 4

Table 5.20.: Communication and computation costs of protocol suites STR, TGDH, µSTR, µTGDH and
TFAN
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5.5.2.2. Communication and computation costs

The computation costs in all protocols between STR and µTGDH are contiguous. The only differences are
that in µTGDH the group key is first computed by the sponsor after the broadcasting of the message, and that
the new share and its public value are picked up from the random-depot, but not generated and computed in
real time (precomputing). Hence in the following we analyze only the communication costs.

Setup Both protocol suites need the same number of rounds and messages. However the message size
required in µTGDH is much less than in TGDH. The reduced message size is ((ht − 2)2ht+2 + n + 8) -
(h2

t − ht + n) = 4(ht − 2)2ht + 8 + ht − h2
t ≈ 4nht ≈ 4nlogn

2 .

Join, leave, refresh Both protocol suites need the same number of rounds and messages. Considering
the message size, TGDH scales linearly in the number of members, while µTGDH scales logically in the
number of members.

Merge Both protocol suites need the same number of rounds and messages. Although the message size
consumed in TGDH and µTGDH are complex, it is not difficult to find that TGDH scales linearly in the
product of the number of merging groups and the merged group size, while µTGDH scales logarithmically
in the product of the number of merging groups and the number of merged group size.

Partition Both protocol suites need the same number of rounds and messages. Considering the message
size, TGDH scales linearly in the product of the number of rounds and the number of remaining members,
while µTGDH scales logarithmically in the product of the number of rounds and the number of remaining
groups.

Summary As discussed above, µTGDH protocols require less memory costs, and less bandwidth due
to smaller messages than in TGDH. Both protocol suites need the same number of rounds and messages.
µTGDH requires less serial computation time than TGDH, since random-depot (precomputing) is applied
and the sponsor broadcasts its message before it computes the group key. Hence as a whole, µTGDH is
more efficient than TGDH.

5.5.3. µSTR/µTGDH vs. TFAN

As discussed above, µSTR and µTGDH are better than STR and TGDH respectively, hence we do not
consider STR and TGDH in this section.

5.5.3.1. Memory costs

Considering TFAN, it is clear that TFAN with µTGDH ms-trees consumes less storage space than with
µSTR ms-trees. If we increase m, the allowed maximal height of ms-trees, the member needs to store more
keys and public keys of the ms-tree, however the number of keys and public keys outside the ms-tree is
decreased.

It is clear that the required memory space of TFAN with µSTR ms-trees is less than µSTR, and of TFAN
with µTGDH ms-trees is more than µTGDH. Hence as a whole, all protocol suites can be sorted from the
least to highest memory consumption as follows: µTGDH < TFAN (art = T ) < TFAN (art = S) < µSTR.
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5.5.3.2. Communication and computation costs

Setup µSTR and TFAN with µSTR ms-trees are the most communication efficient protocols. Only 2 or
3 rounds are needed to form a new group from all individual group members. TFAN with µTGDH ms-trees
is comparatively efficient, m + 2 rounds are needed. µTGDH is at most inefficient, scaling logarithmically
with the number of group members. According to the number of rounds, they can be sorted as follows:
µSTR < TFAN (art = S) < TFAN (art = T ) < µTGDH.

We consider now the number of messages and the total message size. According to number of broadcast
messages all protocols can be sorted from the least to the highest as follows: µSTR < TFAN (art = S) <
TFAN (art = T ) < µTGDH. And considering the total message size, they are sorted as follows: µTGDH
< TFAN (art = T ) < µSTR < TFAN (art = S).

With respect to the serial multiplications, µTGDH is most computation efficient, scaling logarithmically
in the number of members. µSTR requires a linear number of serial multiplications relative to the group
size. The computation costs of TFAN in both cases depend on m. In general TFAN (art = T ) is more
efficient than TFAN (art = S), which in turn more efficient than µSTR. Hence all protocol suites can be
sorted with respect to serial multiplications as follows: µTGDH < TFAN (art = T ) < TFAN (art = S) <
µSTR.

Considering the communication and computation costs, TFAN (art = T ) is most suitable to handle the
setup event.

Join All protocols require 2 rounds and 2 messages. The total message size of STR is only constant, only
3 bkeys. In µTGDH it scales logarithmically in the number of group members. Since the shallowest ms-tree
is usually not fully filled, the new member is joined in this ms-tree. In this case, the message size of TFAN
(art = S) is 4, and of TFAN (art = T ) is m + 1. Hence according to the required communication costs,
the protocol suites can be sorted as follows: µSTR < TFAN (art = S) < TFAN (art = T ) < µTGDH.

Under the assumption that the first ms-tree in TFAN is not fully filled, µTGDH is most expensive in
terms of computation, it scales logarithmically in the number of serial multiplications. The number of serial
multiplications in TFAN (art = T ) is 3m + 1, and in TFAN (art = T ) is 7. µSTR, in turn, uses only
4 multiplications. Hence according to the required computation costs, all protocol suites can be sorted as
follows: µSTR < TFAN (art = S) < TFAN (art = T ) < µTGDH.

Considering the communication and computation costs, µSTR is most suitable to handle the join event.

Leave, refresh All protocols require 1 round and 1 broadcast message. µTGDH has the least cumulative
message size, while µSTR the highest. TFAN (art = S) consumes more bandwidth than TFAN (art = T ).
In general the cumulative message size required by TFAN is between µSTR and µTGDH. According to the
required computation costs, all protocol suites can be sorted as follows: µTGDH < TFAN (art = T ) <
TFAN (art = S) < µSTR.

According to the cumulative message size and serial multiplications, all protocol suites can be sorted as
follows: µTGDH < TFAN (art = T ) < TFAN (art = S) < µSTR. As a whole µTGDH is most suitable to
handle leave and refresh event.

Merge We first look at the communication costs. Note that µTGDH scales logarithmically in the number
of merging groups, while all other protocols are more efficient using a constant number of rounds. According
to number of rounds, all protocol suites can be sorted as follows: µSTRH = TFAN (art = T ) = TFAN
(art = S) < µTGDH.

Furthermore µTGDH consumes double broadcast messages as other protocols. Since the cumulative
broadcast message size depends on the art and the maximal allowed height m of ms-trees, it is difficult to
give the exact relation between TFAN and other protocols. In general, all protocols can be sorted according
to the message size as follows: TFAN (art = T ) ≈ TFAN (art = S) < µSTR and µTGDH, while the
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relation between µSTR and µTGDH depends on the number of merging groups and the tree structures. With
respect to computation costs, all protocols can be sorted as follows: µTGDH < TFAN (art = T ) < TFAN
(art = S) < µSTR. Hence TFAN (art = T ) is most suitable to handle the merge event.

With respect to computation costs, all protocols can be sorted according to the message size as follows:
µTGDH < TFAN (art = T ) < TFAN (art = S) < µSTR.

Hence TFAN (art = T ) is most suitable to handle the merge event.

Partition Table 5.20 shows that the µSTR and TFAN (art = S) protocols are most communication
efficient, i.e. they require only one or two rounds. While partition is the most expensive operation in
µTGDH, requiring a number of rounds bounded by the minimum of either the updated tree’s height or
log2 p + 1. The number of rounds in TFAN (art = T ) is bounded by m

2 + 1. According to the number
of rounds, all protocol suites can be sorted as follows: µSTR < TFAN (art = S) < TFAN (art = T ) <
µTGDH.

With respect to the computation costs, µTGDH requires a logarithmic number of multiplications, while
µSTR scales linearly in the group size. TFAN is comparatively efficient, and less serial multiplications are
needed if art = T . According to the computation costs, they can sorted as follows: µTGDH < TFAN
(art = T ) < TFAN (art = S) < µSTR.

Considering the communication and computation costs, TFAN is most suitable to handle the partition
event.

5.5.4. Discussion summary

As discussed above, the µSTR protocol is most suitable in networks where high network delays dominate.
However, its computation costs are most expensive. While µTGDH is most suitable in networks with clients
having limited computation and storage space, and with low network delays. However, as described in
Chapter 1, the clients in ad hoc networks, in general, have limited processor power, storage capability, and
energy. Additionally, the network delays dominate in such networks. Considering these properties, TFAN
protocol suite is optimal for the group key agreement in ad hoc networks.

5.6. Experimental Results

To compare the actual performance between µSTR, µTGDH and TFAN protocol suites, we implement all
six sub-protocols in TFAN, µSTR and µTGDH, and compare their computation and communication costs
in this section. The protocol suites are implemented with J2ME CDC [113], and tested with the virtual
machine CDC HotSpot Implementation [113] on the laptop with Centrino 1.7 GHz processor and 512 MB
memory. We simulate the computation process and measure the total computation delay beginning with the
time the event occurs and ending with the time the group key is computed.

5.6.1. Test method

To perform fair comparisons, we consider the following settings:
• We use the EC curve P-192 defined in [79]. The security level corresponds to p = 2720 in Z∗

p and
q = 180 of its sub-group where DL-problem is hard [64]. We use the BouncyCastle API [117] for
J2ME to implement the operations over the elliptic curve. Due to the not optimized implementation
the EC-TbDH is much slower than expected. However we can not find another opensource project
which provides such operations.

• For a better comparison of the costs we omit the generation and verification of signatures, by simu-
lating of the protocols in application level 9. The reason is that the application layer implements only

9We provide the description of implementation levels further in Section 6.
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the TFAN API, the underlying levels, i.e. authentication level, GCS layer, and underlying GCS layer,
provide additional functions.

• Random trees for µTGDH are used in the simulation. The TFAN trees are half fully filled, i.e. the
number of members in each ms-tree is dm+1

2 e for art = S and d2m−1e for art = T , and its µTGDH
(if art = T ) ms-trees are random.

We use the following scenarios to measure the computation delay and communication costs. For setup,
join, leave and refresh, the number of current group members is n = 4k, k ∈ [1, 16]. For partition, the group
size before partition is n = 16, 32, and 64. For merge, the group size after merge is n = 16, 32, and 64. For
simplicity, we denote TFAN with art and m as TFAN(art, m), e.g. TFAN(T , 2) and TFAN(S, 3).

5.6.2. Setup result

We measure the costs from the time all members have collected all setup requests and begin to form the tree
until the time the group key is computed. The TFAN group is only measured if the group size is greater than
the most allowed number of members in an ms-tree, in other words, TFAN groups with only one ms-tree are
not measured.

Figure 5.13 gives the cost comparisons in computational delay, number of rounds, number of messages,
and message size. The x axis denotes group size. The y axis in the top left graph denotes the computational
delay in seconds, in the top right graph denotes the number of rounds, in the bottom left graph denotes
the number of messages, and in bottom right graph denotes the cumulative message size in kilo bytes.
The experiment results shown on Figure 5.13 is identical with the theoretic results in the computation and
communication costs.

5.6.3. Join result

We measure the costs for a member to join a group of n members. Figure 5.14 shows the cost comparisons in
computational delay, and message size. Since the number of rounds and messages is always 2 in all protocol
suites, their comparison is omitted. The x axis denotes group size before join. The y axis in the left graph
denotes the computational delay in seconds, in the right graph denotes the cumulative message size in kilo
bytes. The computation costs shown on Figure 5.14 are identical with the theoretic results. However the
message size scales in the group size in all protocol suites. The reason is that in join protocol the sponsor
broadcasts the whole tree structure.

5.6.4. Leave result

We measure the costs for a random member to leave a group of n members. We execute in the simulation
the voluntary leave. However, to simulate the involuntary leave, all communication costs relative to the
voluntary leave request are not measured. We choose the leaving members randomly from the group and
compute the average costs.

Figure 5.15 compares costs for computational delay and message size. Since the number of rounds and
messages is always 1 in all protocol suites, their comparison is omitted. The x axis denotes the number of
group members before leave. The y axis in the left graph denotes the computational delay in seconds, in the
right graph denotes the cumulative message size in kilo bytes. The experiment results shown on Figure 5.15
are identical with the theoretic results in the computation and communication costs.

5.6.5. Merge result

We measure the costs from the time when the broadcast sponsors prepare for the merge to the time when
the new group key is agreed. The number of resulting group members is 16, 32, and 64. We assume the
maximum number of merging groups is 5. In practice, merge of two groups is most frequent. However, we
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allow up to five groups since some group communication systems may allow (require) more than two groups
merging.

Figures 5.16, 5.17, and 5.18 show the cost comparisons for the cases with group size after merge: 16, 32,
and 64 respectively. In all graphs, the x axis denotes the group size before merge, while the y axis in the top
left graph denotes the computational delay in seconds, in the top right graph denotes the number of rounds,
in bottom left graph denotes the number of messages, and in bottom right graph denotes the cumulative
message size in kilo bytes. The experiment results shown on Figure 5.15 are identical with the theoretic
results in the computation and communication costs.

5.6.6. Partition result

We measure the costs from the time the partition event occurs. We execute in the simulation the voluntary
partition. However, to simulate the involuntary partition, all communication costs relative to the voluntary
partition request are not measured. The leaving members are chosen randomly from the group.

Figures 5.19, 5.20, and 5.21 show the cost comparisons for the the cases with group size before partition:
16, 32, and 64 respectively. In all graphs, the x axis denotes the group size before partition, while the y
axis in the top left graph denotes the computational delay in seconds, in the top right graph denotes the
number of rounds, in bottom left graph denotes the number of messages, and in bottom right graph denotes
the cumulative message size in kilo bytes. The experiment results shown on Figure 5.15 are identical with
the theoretic results in the computation and communication costs.

5.6.7. Refresh result

We measure the costs from the time when a member, refresher, begins to update its share to the time the
new group key is computed. We choose the refreshers randomly from the group and compute the average
costs. Figure 5.22 shows the cost comparisons in computational delay, and message size. Since the numbers
of rounds and messages are always 1 in all protocol suites, their comparison is omitted. The x axis denotes
the group size. The y axis in the left graph denotes the computational delay in seconds, in the right graph
denotes the cumulative message size in kilo bytes.

5.6.8. Conclusions

The above experiment results validates the theoretic ones, in other words, TFAN protocol suite is more
suitable for ad hoc networks than µSTR and µTGDH. As shown on the Figures 5.13 to 5.21, the costs for
TFAN depends on the art and m. From the experiment results, we suggest the following parameters of
TFAN for specified group size n 10: For n < 24 TFAN(T, 2) and TFAN(S, 7) are most suitable, and for all
other group size less than 100 11 the TFAN(T, 3) and TFAN(S, 7) are most suitable.

10Group size before join, leave, and partition, and after merge.
11In ad hoc networks the number of clients is usually less than 100.
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Figure 5.13.: Cost Comparison for Setup: x = group size
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Figure 5.14.: Cost Comparison for Join: x = group size before JOIN
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Figure 5.15.: Cost Comparison for Leave: x = group size before LEAVE
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Figure 5.17.: Cost Comparison for Merge (32 users): x = group size before MERGE



5.6 Experimental Results 121

0

10

20

30

40

50

60

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

C
om

p.
 T

im
e 

(s
ec

)

0

5

10

15

20

25

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

N
r. 

O
f M

es
sa

ge
s

1.5

2

2.5

3

3.5

4

4.5

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

R
ou

nd
s

9

10

11

12

13

14

15

16

17

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

M
es

sa
ge

 S
iz

e 
(K

B
)

TFAN(T,2) TFAN(S,3) TFAN(T,3) TFAN(S,7)

TFAN(T,4) TFAN(S,15) TFAN(T,5) TFAN(S,31)

TFAN(T,6) TFAN(S,63) AH-STR AH-TGDH

Merge Costs Comparison (64 Users) 
(Application Layer) 

AH-STR and all 
TFAN types 

AH-STR and all 
TFAN types 

Figure 5.18.: Cost Comparison for Merge (64 users): x = group size before MERGE
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Figure 5.19.: Cost Comparison for Partition (16 users): x = group size before PARTITION
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Figure 5.20.: Cost Comparison for Partition (32 users): x = group size before PARTITION
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Figure 5.21.: Cost Comparison for Partition (64 users): x = group size before PARTITION
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Figure 5.22.: Cost Comparison for Refresh: x = group size



6. TFAN API

In this chapter we describe the TFAN application programming interface (TFAN API). The API implements
the TFAN protocol suite in Java. The remaining of this chapter is organized as follows: Section ?? discusses
the goals and design principles, and the architecture is overviewed in Section 6.2. In the remaining sections
we describe some most important components in TFAN API.

6.1. Goals and Design Principles

The TFAN API is designed to make it simple to agree on a group key with TFAN protocol described in
Section 5.4. Since TFAN is designed for ad hoc networks, the TFAN API uses the Connected Device
Configuration (CDC) [113] of Java 2 Platform, Micro Edition (J2ME) [115] with Foundation Profile (FP)
[114], as the program language. Hence the TFAN API is suitable for all devices supporting at least the
Foundation Profile of J2ME CDC, e.g. PDA and laptop.

To use the TFAN API the network must provide a group communication system (GCS). Any GCS can be
used if the two given interfaces TfanChannel and ChannelParameter are implemented. Since JGroups
[116] are not runnable with J2ME CDC FP, and the JGroups J2ME [49] version does not satisfy our require-
ments, it was not possible to test the protocol in real ad-hoc networks due to the absence of GCS, therefor
simulation on usual PCs was used.

6.2. Architectural Overview

This section describes the TFAN API architecture, defines major classes and interfaces comprising that
architecture, and lists major functions that the architecture implements.

6.2.1. TFAN layered architecture

Figure 6.1 shows the TFAN API architectural. The components are layered as shown below:

• The underlying GCS layer implementing the group communication channel, such that it can create
groups of processes whose members can send messages to each other. This layer should also be
able to report the involuntary events, such as the leaves and partitions. The GCS is response for
the following: It receives messages and events, and forwards them to the above layer, and sends the
messages generated by the above layer.

One example of GCS is the JGroups API, it is an open-source toolkit for reliable multicast communi-
cation. The main features that are relevant to TFAN API are:

– Group creation and deletion. Group members can be spread across LANs or WANs,
– Joining and leaving of groups,
– Membership detection and notification about joined/left/crashed members,
– Detection and removal of crashed members,
– Sending and receiving of member-to-group messages, and

Any toolkit having the above mentioned features can replace JGroups in the underlying GCS layer.
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Figure 6.1.: Layer of TFAN API

• The GCS layer declares interfaces and classes intended to handle the messages. It can work in both
directions. It receives the messages from the underlying GCS layer, decapsulates them, and then
forwards the resulted messages to the above layer: authentication layer. It the reverse direction it
encapsulates the messages from the authentication layer and forwards the encapsulated messages to
the underlying GCS layer.

Messages and events are received from the underlying GCS. If an involuntary leave or partition event
is received, a respective request is created as a GcsMessage object. The GcsMessage object is then
forwarded to the Capsulation object. Unexpected messages are rejected and the accepted messages
are then decapsulated to a TfanMessage object.

The MembershipCheck object checks further whether the message should be accepted or not. De-
tails about the membership check are described in Section 6.4.

• The authentication layer declares the classes to manage the certificates, and to generate or verify
signatures. The incoming voluntary request with invalid signature will be rejected. Since involuntary
requests are generated by the local underlying protocols, they are always forwarded. Setup requests,
join requests, and merge requests from the member of other groups are signed with the embedded
sender’s certificate. All other voluntary requests, e.g. refresh request and leave request are verified
with the stored sender’s certificate.

The outgoing requests, forwarded by the application layer, must be signed so that they can be accepted
by other members. For the setup request and join request, the sender’s certificate is embedded, and for
the merge request, all certificates of the group members are embedded in the message. The requests
together with available certificates are then signed and forwarded to the GCS layer.

• The application layer is the core layer in TFAN API. It declares interfaces and classes to handle
the agreement of group key of protocol suites TFAN. It covers all protocols in TFAN: setup, join,
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leave, merge, partition, and refresh. TFAN protocol suite uses the ms-tree, hence some abstract ms-
protocols and ms-trees classes are defined, which must be implemented by any type of ms-protocol
suite, e.g. µTGDH tree and µSTR tree. The TFAN protocols and trees access methods of µTGDH
and µSTR protocols and trees via the abstract ms classes. The TFAN protocols and tree accesses the
cryptographic classes via the abstract cryptographic classes, the advantage is to make it possible to
use other classes which implement these abstract ones. In the actual version, the classes for Diffie-
Hellman with the elliptic curve cryptosystem are implemented.

6.2.2. TFAN class hierarchy

Figure 6.2 shows most classes and interfaces comprising the TFAN API. The descriptions of some classes

Encodable
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JoinUpdateRequest
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TfanProtocol TfanPartition

TfanLeave

TfanJoin

TfanRefresh TfanSetup

Figure 6.2.: Classes of TFAN API

shown in this diagram will be described in the following sections. All other classes and interfaces can be
found in the javadoc documents.
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6.2.3. Using the TFAN API

This section defines the syntax and lists the order in which a client application calls some TFAN methods in
order to setup a group and to handle the dynamic operations.

We start with two configuration files: group configuration file and client configuration file. Introduction
about the configurations can be found in examples in Appendix A.1 and A.2. All members in one group
should have the same group configuration, and each member in one group has the unique identity.

1. A TFAN client typically begins a task by obtaining the object of the class implementing the abstract
class Worker, e.g. JWorker. Then a thread with the object will be started. This thread runs until the
method worker.interrupt() is invoked or the thread is interrupted.

Worker worker = new JWorker(groupconfig, memberconfig,
"keystorepwd", "keypwd");

Thread thread = new Thread(worker);
thread.start();

2. If no group exists, the client broadcasts a setup request to the group by invoking worker.setup(),
then the client invokes automatically the setup protocol with the defined delay, if any other setup
requests are received. Otherwise it forms a group with itself as the unique member. The setup of the
tree, the update of bkeys, the computation of keys and bkeys, the broadcast of the bkeys, etc., will be
done by the program automatically until the group is formed.

3. Assumed that a group with the same group name exists. The client joins into the group. It broadcasts
a join request by invoking worker.join(). As in setup protocol, all remaining operations will be
done by the program automatically.

4. If a client within a TFAN group wishes to leave the group, it just broadcasts a leave request by
invoking worker.leave(). And if a client wishes to split the group, it chooses first other mem-
bers which should be in the same sub-group, stores them in othersInMySubGroup, an object of
java.util.List, and invokes worker.partition(othersInMySubGroup).

5. If more than two groups wish to merge into one group, the broadcast sponsor of each group broadcast
broadcasts the respective group by invoking the method worker.merge().

6. If some involuntary events happen, such as the crash of some members, all remaining members exe-
cute then the leave or partition protocol.

6.3. The classes Worker and Group

Figure 6.3 shows the UML diagram of both classes. The Group class defines a set of attributes: channelPa-
rameter (ChannelParameter object), gkp (GroupKeyParameter object), authentication (Authen-
tication object), and groupname, to manage the TFAN group. The core attribute is tree, a TfanTree
object. The groupname is used by the Capsulation object capsulation. The description of class Tfan-
Tree is given in Section 6.6.2, of class Authentication in Section 6.5, the others in Section 6.4.

The class Worker is an abstract class, the reason is that some functions depend on the used underly-
ing GCS system and the used DH-type. We have implemented a sub-class JWorker using the JGroups
GCS and the ECDH. Worker prepares its sub-classes in two ways to build a worker. The one is with a
WorkerControll object, a TfanChannel object and a Group object as parameters. The other with a
file of group configuration, a file of client configuration, the passwords to access the owner’s private key and
certificates stored in an java.security.KeyStore object.
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Runnable

Worker

-protocol : TfanProtocol

-mergeRequests : Set
-outQueue : List

-setupRequests : Set

-controller : WorkerControll

-updates : Set

-initiator : Initiator

-leavingMembers : Set

-print : boolean

-inQueue : List

+join : void

#genChannelParam : ChannelParameter

+refresh : void
+run : void

+leave : void

#parseGkp : GroupKeyParameter

#genAndInitChannel : TfanChannel
+setup : void

+partition : void
+merge : void

 group : Group
 channel : TfanChannel

Group

attributes
-capsulation : Capsulation

operations

+toString : String
+Group

+decMessage : Request

+getGroupKey : Key

+decode : Object
+encapsulateMessage : GcsMessage

+getOwner : LeafNode

+verifyMessage : boolean

+decapsulateMessage : TfanMessage

+encMessage : GcsMessage

properties

 channelParameter : ChannelParameter
 groupKeyParameter : GroupKeyParamete

 tree : TfanTree
 mscheck : MembershipCheck

 authentication : Authentication

 groupName : String

Figure 6.3.: UML diagram of Worker and Group

Worker manages the following queues: outQueue stores the messages to be sent, mergeRequests stores
the merge requests of other groups, leavingMembers stores the members having left the group since last
partition or leave operation. inQueue stores the not handled incoming messages, except for the merge,
leave, and partition requests.

As described in Section 6.2.3, the methods setup, join, leave, merge, partition and refresh defined in
Worker can be used to initiate the respective protocols.

6.4. Components in GCS layer

The most important components in GCS layer are the interface TfanChannel and its implementation
class JGroupsChannel, the classes Capsulation, MembershipCheck and GcsMessage. All
components are defined in package org.tfan.gcs and its sub package. The UML diagram of them is shown
in Figure 6.4.
GcsMessage defines two attributes: groupname and tfanMessage. All requests/messages sent and re-

ceived by TfanChannel are GcsMessage objects.
TfanChannel declares the abstract methods to initialize the channel, to get the state of the channel,

to connect or disconnect/close the channel, to send and receive the channel. Its implementation class,
e.g. JGroupsChannel should implement all methods, with the respect to the underlying GCS layer. It
sends and receives the GcsMessage objects. Additionally if some members leave the group involuntarily,
the channel generates the respective InvoluntaryLeaveRequest or InvoluntaryPartitionRe-
quest object, according to some information - such as the view in JGroups, and then encapsulates it in a
GcsMessage object.

A Capsulation object encapsulates an outgoing SignedRequest object into a GcsMessage by
adding the group name. It decapsulates also the incoming GcsMessage objects. The message containing
MergeRequest object is accepted without any check, all other messages are only accepted if they have
the same group name as the Capsulation object. The accepted GCS messages are then decapsulated to
TfanMessage objects by removing the group name.

The attribute mscheck checks the membership of the sender of the incoming messages. All leave, refresh,
partition requests, and update requests (except for merge requests) are only accepted if their senders are
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MembershipCheck

-unconfirmedMembers : Set

+addMember : void

+remove : void

+addMember : void

+remove : void

+removeAllExcept : void

+contains : boolean
+contains : boolean

+checkInMessage : boolean

+removeAll : void

+addMembers : void

 confirmedMembers : Set
 ownerID : String

interface
TfanChannel

+close : void

+send : void
+removeTfanID : byte[]

+send : void

+getLocalAddress : TfanAddress

+disconnect : void

+init : void

+addTfanID : byte[]

+connect : void

+isConnected : boolean

+receive : GcsMessage

+getNumMessages : int

+receive : GcsMessage

+getGroup : Group

+getMembers : Vector

+isOpen : boolean

Capsulation

-groupName : String

+changeGroupName : void

+getGroupname : String
+encapsulateMessage : GcsMessage
+decapsulateMessage : TfanMessage

Encodable
GcsMessage

+decode : GcsMessage
+getEncoded : byte[]

 groupname : String

 tfanMessage : TfanMessage
 src : TfanAddress

Figure 6.4.: UML diagram of components in GCS layer

members of the receiver’s group. It rejects setup requests, if there are at least two members in the group, and
rejects join requests, if the sender’s identity is used in the group. Merge requests are only accepted if both
groups do not have any same member identity. The leaving members will then be removed from the list of
members, and the joining members are added to the list.

6.5. Components in authentication layer

The core components in authentication layer are the classes SignedRequest, Authentication, Cert-
Store, and the interface TfanMessage, all of them are defined in package org.tfan.auth. The UML
diagram of them is shown in Figure 6.5.
TfanMessage declares no abstract methods. It has the sub-interface InvoluntaryRequest and

the implementation class SignedRequest. The latter defines a set of attributes:
• mdAlgo - The message digest algorithm, e.g. ,, SHA-1“ and ,,RipeMD-160“;

• request - The voluntary request, such as the object of JoinRequest and VoluntaryLeaveRequ-
est;

• encodedCerts - A list of encoded user certificates. If the request is a join and setup request, the sender’s
certificate is sent together with the request. And for the merge request, the broadcast sponsor embeds
all encoded certificates of the current members in the SignedRequest. The voluntary request with
embedded certificates are signed before the broadcasting.

• signature - The signature built over the voluntary request and the embedded certificates.

CertStore is used to manage the certificates. Since the ad hoc devices have in general limited memory,
all certificates are stored in the file system instead of memory, and the respective file locations are stored
in the maps subjMapFile and issuerSnMapFile. In both maps, the value of each entry is the certificate
file location, and the key is the certificate’s subject or the combination of the issuer and the serial number.
Invoking the method getCert(CertID certID) a certificate returns, or null if no certificate matches the certID
returns.
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Figure 6.5.: UML diagram of components in authentication layer

The Authentication object embeds the certificates into outgoing join, leave and merge requests,
and signs all outgoing voluntary requests with the signer’s private key. It defines two CertStore ob-
jects: cacerts to manage the trusted CA certificates, and usercerts to manage the certificates of the group
members. Certificates of leaving members will be removed from usercerts. The signatures of all incoming
SignedRequest objects are verified by the Authentication object. Since those with involuntary re-
quests are not signed, they are forwarded without the signature verification. All others with invalid signature
are rejected. The new members’ certificates are stored in folder certsFolder and the locations are managed
by usercerts, and certificates of the leaving members are removed from usercerts and the file system.

The authentication can be replaced by any other authentication mechanism through implementation of
required interfaces.

6.6. Components in application layer

This section discusses the most important interfaces and classes in application layer. They are further clas-
sified into the following categories:

• Key components (Section 6.6.1);

• Tree components (Section 6.6.2);

• Request components (Section 6.6.3);

• Protocol components (Section 6.6.4).

6.6.1. Key components

Interfaces and classes falling into this category are the interfaces KeySpec, Key, Bkey, and GroupKeyPa-
rameter, and the classes ECKey, ECBkey, ECGroupKeyParameter, and KeyPair. They are in
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Figure 6.6.: UML diagram of key components

package org.tfan.crypto and its sub-package org.tfan.crypto.ec. Figure 6.6 shows the UML diagram of the
above components.

The interface KeySpec defines one abstract method getGroupKeyParameter which returns GroupKey-
Parameter object. Its sub-interfaces Key and Bkey represent the key and bkey defined in TFAN protocol
suite. A key pair consisting of a key and its corresponding bkey.
Key declares the following methods:

• dhWith(Bkey) to execute Diffie-Hellman with a bkey,

• equals(Key) to check the equality with another key,

• bkey() to derive the corresponding bkey.

Similarly Bkey defines the methods dhWith(Key) and equals(Bkey).
The remaining components are the implementation classes of the above interfaces. They are implemented

for elliptic curve Diffie-Hellman (ECDH).

6.6.2. Tree components

Components falling into this category can be further classified as follows:

• node components: the abstract class Node and its sub-classes MainNode, MSNode and LeafNode;

• ms-tree components: the abstract class MSTree and its sub-classes StrMSTree and TgdhMSTree;

• tfan tree components: the class TfanTree.

The UML diagram of these components is illustrated in Figure 6.7. For simplicity, all methods and unim-
portant attributes are omitted. We refer the reader to the javadoc documents for a more detailed information.
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Figure 6.7.: UML diagram of tree components

Each Node object has at most a key and a bkey, and must have a label. The type of label depends on the
node’s type, and the ms-tree’s type in case of MSNode objects. For example, a main node has the MNlabel
object, e.g. MN2, an ms-node in an STR ms-tree has the StrLabel object, e.g. IN8 or LN8, and the label
of an ms-node in a TGDH ms-tree is a TgdhLabel object, e.g. 〈2, 3〉.

The class MSNode extends the Node with some attributes. The attributes parent, left and right define the
parent node , left child and right child bides respectively. The attribute inTree defines the ms-tree which con-
tains this ms-node. Its sub-class LeafNode extends it further with the attribute param, an LNParameter
object. param stores the member’s information, such as the identity, the IP-address and port, the private key,
and the certificate. Since a leaf node has no children, the attributes left and right must be null.

The class MainNode extends the Node with the following attributes: prev and next define the previous
and next main node respectively, namely the parent and the left child. And mstree defines the ms-tree whose
root is the right child of the main node.

Each MSTree object has two attributes, root defines the root of the ms-tree, and mainnode is the parent
of root. It also defines some abstract methods which should be implemented by the sub-classes, such as
StrMSTree and TgdhMSTree.

The class TfanTree defines the attributes and methods to manage the tree used in TFAN protocol suites.
The attribute owner, a LeafNode object, defines the owner of this tree, more strictly, only owner has key
and the tree is of owner’s view. The tree configuration (art and m) is stored in treesetting. The attributes
root and trail define the first main node and the last one 1 respectively.

6.6.3. Request components

Requests are used to communicate among the groups, surely they must be encapsulated in other containers.
Since there are various requests, the interface Request is defined to cover all requests, i.e. all requests
must implement Request. The UML diagram of the interfaces and classes relative to requests are shown
in Figure 6.8.

1In real TFAN protocol suite, the last main node and the root of the last ms-tree are represented by the same entity. However, since
the main node is a MainNode object and the ms-tree’s root is an MSNode object, it is more convenient to define two nodes: a
main node as trail and a ms-node as the root of trail’s ms-tree. The trail is just a placeholder, all accesses to it are forwarded to
its ms-tree’s root.
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According to the generation they can be classified into voluntary requests and involuntary requests, hence

they must implement the interfaces VoluntaryRequest and InvoluntaryRequest respectively,
which are sub-interfaces of Request. The only two involuntary requests are the involuntary leave request
(corr. to the class InvoluntaryLeaveRequest) and the involuntary partition request(corr. to the class
InvoluntaryPartitionRequest). All other requests are voluntary requests.

According to the function the requests can be classified into:

• Setup request, corresponding to the class SetupRequest. The setup request is applied in the setup
protocol. Its unique attribute is member, a LeafNode object, who wishes to form a new group. Since
the request will be broadcasted, no private information should be contained. Hence the attribute key
and the attribute signKey of the attribute param should be null.

• Join request, corresponding to the class JoinRequest. The join request is applied in the join
protocol. Its unique attribute is member, a LeafNode object, who wishes to join into the existing
group. Similarly no private information should be contained in the join request.

• Leave request, corresponding to the abstract class LeaveRequest. The leave request is applied in
the leave protocol. It can be voluntary or involuntary. Its unique attribute is leaver, an LNParameter
object without private information, who leaves the group. A voluntary leave request is generated by
the leaving member, where as an involuntary leave request is generated by the channel (see Section
6.4).

• Partition request, corresponding to the abstract class PartitionRequest. The partition request is
applied in the partition protocol, and can be voluntary or involuntary. The partition request contains a
list of members who leave the group. The voluntary partition request contains additionally the attribute
sender, which defines the sender of this request. The sender must be one of leaving members. Similar
to the involuntary leave request, a involuntary partition request is generated by the channel.

• Update request, corresponding to the class UpdateRequest. An update request contains the
sender and some bkeys. The bkeys are stored in a java.util.HashMap object. The class
UpdateRequest defines methods, which can be invoked to get the bkey of the object that imple-
ments the interface Node. Sponsors generate the UpdateRequest objects to broadcast the changed
bkeys. Hence it is used in any protocol that requires sponsors.

Sometimes the tree structure must also be broadcasted. For this purpose we define the class Update-
ReqWithTreeStruct, a sub-class of UpdateRquest. Since in join protocol, the new member
does not know the tree structure, the sponsor generates a JoinUpdateRequest object, which is
sub-class of UpdateReqWithTree-Struct, instead of an UpdateRequest request. Another
example is the merge request (see below).

• Merge request, corresponding to the class MergeRequest, a sub-class of UpdateReqWithTree-
Struct. The merge request is applied in the merge protocol, and can be generated only by the
broadcast sponsor. It contains the sender, tree structure and bkeys of all sub-roots. Additionally the
attribute groupname is defined, which stores the current group name. It is used to choose the group
name after the merge operation.

• Refresh request, corresponding to the class RefreshRequest, a sub-class of UpdateRequest.
The refresh request is applied in the refresh protocol. Every refresh contains a refresher, and some
changed bkeys.

6.6.4. Protocol components

The interfaces and classes falling into this category are the core components of TFAN API. The UML
diagram of most of them is shown on Figure 6.9.

According to the function they can be further classified into the following categories:
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Figure 6.8.: UML diagram of request components

• The interface Initiator and its implementation classes: The interface Initiator declares an
abstract method getRequest() which returns an voluntary request. Its implementation classes define
the initiators of all six protocols:

– The class Setup: Each member wishes to form a new group should first construct a Setup
object and then get the setup request with the method getRequest().

– The class NewMember: A member wishes to join a group should first construct a NewMember
object and then get the join request with the method getRequest().

– The class Leaver: A member wishes to leave the group should first construct a Leaver object
and then get the leave request with the method getRequest().

– The class PartitionInitiator: To split the group into two sub groups, one of the mem-
bers will be chosen as the partition initiator. The initiator chooses the members who are in its
sub group, constructs a PartitionInitiator object, and then get the partition request with
the method getRequest().

– The class MergeRequest: Only the broadcast sponsor in a group is allowed to send the merge
request. It constructs first a BCastSponsor object and get the merge request with the method
getRequest().

– The class Refresher: A member wishes to refresh its share should first construct a Refresh-
er object and then get the refresh request with the method getRequest().

• The abstract class TfanMSProtocol and its sub classes: The class TfanMSProtocol is ab-
stract, it defines the attributes mstree to store the ms-tree relative to the protocols in ms-tree, and
sponsors to store the sponsors. Since the protocols’ processes depend on the used ms-tree, the four
sub-classes TfanMSSetup, TfanMSJoin, TfanMSPartition and TfanMSLeave are further
abstract. They can be used by the TFAN protocols to access their sub-classes. Each class has then
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Figure 6.9.: UML diagram of protocol components

two sub-classes: the one for STR ms-tree, the other for TGDH ms-tree, e.g., the sub-classes of
TfanMSSetup are StrSetup and TgdhSetup.

• The abstract class TfanProtocol and its sub classes: The class TfanProtocol is the super
class of all TFAN protocol classes. The unique attribute of it is group. It stores the group which is the
target of the protocols. The six TFAN protocol classes are described below.

– The class TfanSetup is used to execute the setup protocol in TFAN protocol suite. The at-
tribute members stores all members who wish to form a new group, the sponsor stores the mem-
ber who should compute and broadcast the bkeys of the main nodes after the collection of bkeys
of all sub-roots, and nodes2update stores the nodes whose bkeys should be computed and broad-
casted by the owner of the group.

– The class TfanJoin is used to execute the join protocol. The attributes newMember and spon-
sor store the new member and the sponsor respectively.

– The class TfanLeave is used to execute the leave protocol. The attributes leave and sponsor
store the leaving member and the sponsor respectively.

– The class TfanMerge is used to execute the merge protocol. The unique attribute is or-
deredTrees, i.e. the list of trees whose groups should be merged. The trees in the list are sorted
according the criteria described in Section 5.4.4.

– The class TfanPartition is used to execute the partition protocol. The attributes leav-
ingMaps stores the leaving members, msSponsors stores the ms-sponsors and sponsor stores
the sponsor. The attribute nodes2update is similar to that in TfanSetup.

– The class TfanRefresh is used to execute the refresh protocol. The unique attribute is re-
fresher.



7. Conclusions

The purpose of this thesis was to find an efficient and secure group key agreement protocol suite suitable
especially for ad-hoc networks. The existing protocol suites were overviewed and compared in the light of
the memory, communication and computation costs. Considering the memory costs, protocols suites 2d-
cube, 2d-octopus, and Asokan-Ginzboorg are most suitable, only the group key needs to be stored after the
agreement. However, such protocols are only suitable for static groups.

The protocol suites CLIQUES, STR and TGDH are designed for dynamic groups since they include aux-
iliary protocols to handle dynamic events. The computation and communication costs in merge protocol
of CLIQUES is not acceptable for ad hoc networks. While STR is especially suitable for networks where
high network delays dominate, TGDH is especially computation protocols suites. However, in both pro-
tocol suites each member stores bkeys of all nodes except the root, and the whole tree with all bkeys are
broadcasted while updating the bkeys. We have improved both protocols by storing only the node’s bkey
and bkeys of all nodes in its co-path. We have reduced the size of the broadcast message by including only
required bkeys. The tree structure is only broadcasted if it is not known to all members. The improved
version of STR is µSTR, of TGDH is µTGDH.

Although the communication and memory costs in µSTR and µTGDH are significantly reduced, the
computation costs in µSTR is not acceptable for ad hoc networks with limited computation capability, and
the communication costs of protocols setup, partition and merge in µTGDH are not optimized. Hence we
have proposed TFAN, a group key agreement suitable for ad-hoc networks. It combines the communication
efficiency of µSTR and computation efficiency of µTGDH. The resulting protocol provides an optimal
solution for ad-hoc networks.

We have implemented the TFAN API with J2ME CDC. Provided group communication system the TFAN
API can run in all systems supporting J2ME CDC, e.g. PDAs and laptops.

As future work, we suggested that a tree in TFAN may have various types of ms-trees, while till now only
one type of ms-tree are allowed, either µSTR ms-tree or µTGDH ms-tree, and that each ms-tree has its own
maximal height m.
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A. Appendix

A.1. An example of TFAN group configuration file

# Tree Setting: m is an non negative value, and art is either S
# or T, for invalid art is T insteadly used.
TreeSetting
-m 2
-art T

# Group name
GroupName TFAN-Test Group

# The multicast ip address, from 224.0.0.0 to 239.255.255.255.
GroupAddress 224.0.11.8

#Multicast port, from 1025 to 65525
GroupPort 21108

# Group key parameter.Tfan has defined some consant ec domain
# parameters defined in FIPS-186-2. To use such constant
# parameters, use the following Identifiers: P192, P224,
# P256, P384, P521.
GroupkeyParameter P192

# Or define the ec domain parameters as follows:
# -key value, radix(default 10)
#GroupkeyParameter
#-a -3
#-p 6277101735386680763835789423207666416083908700390324961279
#-n 6277101735386680763835789423176059013767194773182842284081
#-s 3045ae6fc8422f64ed579528d38120eae12196d5, 16
#-b 64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1, 16
#-Gx 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012, 16
#-Gy 07192b95ffc8da78631011ed6b24cdd573f977a11e794811, 16

# Worker controller settings, the time unit of refresh interval
# is minitus, and for all others is seconds.
WorkerControll
-automerge true
-autosetup true
-timeoutmerge 10
-timeoutsetup 1
-timeoutpartition 5
-refreshinterval 10

A.2. An example of TFAN member configuration file

# localAddressAsID indicates wether to use the local address as
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# the member id, If the value is true, omit the next line text,
# otherwise, the memberID must be present.
MemberID
-localAddressAsID false
-MemberID M01

# The keystore that saves the PKCS#8 DER encoded private key
# the passwords to open the keystore and to get the private
# key should be entered manually, if needed.
PrivateKey
-ksfile keystore/keystore-M01.jks
-alias myprivkey

# A list of the file path saving ca-certificates
CACerts
-cacert cacert.pem.der

# The folder depoting the user certificates
CertFolder usercerts
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A.3. Classes of µSTR API
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A.4. Classes of µTGDH API
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