
INTRINSIC SECURITY IN SORCER

(SERVICE ORIENTED) GRID

by

ABHIJIT RAI, B.Tech.

A THESIS

IN

COMPUTER SCIENCE

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

MASTER OF SCIENCE

Approved

Michael Sobolewski
Chairperson of the Committee

Hector Hernandez

Yu Zhuang

Accepted

John Borrelli
Dean of the Graduate School

May, 2005

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Michael Sobolewski, the

chairperson of my committee, for providing the opportunity to work with him. I am

extremely thankful to him for dedicating his time, in spite of his busy schedule towards,

successful completion of my thesis research. I am extremely grateful for showing his

confidence in me. With his constant encouragement and support in designing the

solutions for my thesis problem, I was able to complete the work on time.

I feel glad to thank Dr. Hector Hernandez for accepting to be in my committee.

As a committee member he has always shown extreme interest towards my academic

work by clearly defining the standards and deadlines. As my committee member and

graduate advisor, his advices have guided me to successful completion of my work as a

Masters Candidate. I would like to thank him for his full cooperation and support for

successful completion of my thesis research and graduation.

I am extremely obliged to have Dr. Yu Zhuang as my committee member who has

given me intense moral support during the entire course of my research. I feel grateful in

thanking him for all the encouragement and interest he has shown towards my research.

I would also like to thank my manager Mr. James Turnbull (Center for

Professional Development, Rawls College of Business Administration) for the support nd

confidence he has shown towards me

At last but not the least, I would like to express my heartfelt appreciation to all my

friends in SORCER lab for their timely help and encouragement. He gave me the

iii

flexibility to work on my thesis along with the work in CPD which allowed me to divide

the time comfortably

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

TABLE OF FIGURES ix

ABSTRACT xi

CHAPTER 1

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Challenges 1

1.3 Problem Statement 2

1.4 Thesis Organization 3

2. SERVICE ORIENTED ARCHITECTURES 4

2.1 Web Services 4

2.1.2 Service Discovery 5

2.1.3 Service Invocation 5

2.1.4 Transport 5

2.2 WS Interaction Model 6

2.2.2 WS As Service Oriented Architecture 7

2.3 Grid 7

2.4 Grid Architecture 9

3. JINI AND SORCER 12

3.1 Introduction 12

3.1.1 Services 13

v

3.1.2 Service Registration (The Lookup Service) 14

3.1.3 Java RMI (Remote Method Invocation) 14

3.1.4 Leasing 15

3.1.5 Transaction Management 15

3.1.6 Event Management 16

3.1.7 Discovery and Lookup Protocols 16

3.2 Jini Standard Services [24] [32] 20

3.2.1 The Lookup Service – Reggie 21

3.2.2 The Transaction Manager – Mahalo 21

3.2.3 The JavaSpaces – Outrigger 21

3.2.4 Lease Renewal Service – Norm 21

3.2.5 The Jini Lookup discovery Service – Fiddler 22

3.2.6 Event Mailbox Service – Mercury 22

3.3 SORCER 23

3.3.1 Service Oriented Program (SO) 24

3.3.2 SO in SORCER 26

3.3.3 Service Oriented Runtime Execution Environment (SOREE) 29

3.3.4 Execution of SO in SORCER 29

3.3.5 SORCER Functional Architecture 34

4. SECURITY FRAMEWORK 41

4.1 Introduction 41

4.2 Defining trust 41

4.2.1 Trusted Component 41

4.2.2 Trustworthy Component 41

4.3 What is Insecure 42

4.3.2 Lookup Service 42

4.3.3 Service Provider 43

4.3.4 Service Requestor 43

4.3.5 Proxy 43

vi

4.4 Authentication 44

4.4.1 JAAS 44

4.4.2 JAAS Framework for Authentication [36] 45

4.5 Authorization 45

4.5.1 Subject (doAs() and doAsprivileged) 45

4.5.2 Guarded Objects 47

4.5.3 Permissions/ Policy Objects 47

4.6 Invocation Constraints 48

4.6.1 Integrity 48

4.6.2 Confidentiality 48

4.6.3 ClientAuthentication 49

4.6.4 ServerAuthentication 49

4.6.5 Delegation 50

4.7 Proxy-Trust (Proxy-Verification) 50

4.7.1 Local Code 51

4.7.2 Downloaded Code 51

4.8 Integrity 55

4.8.1 Downloaded Code 55

4.8.2 Communication Integrity 57

4.9 Privacy 57

4.10 Non-Repudiation 58

4.11 Accountability/Auditing 58

5. SECURE FRAMEWORK AND VALIDATION 59

5.1 SGrid – Introduction 59

5.1.1 Jobber (Coordination broker) 59

5.1.2 Cataloger (Synchronous broker) 60

5.1.3 Exertion Space (Asynchronous broker) 61

5.2 S-Grid Components 62

vii

5.2.1 SGrid Dispatcher 63

5.2.2 Caller 64

5.2.3 File Store 65

5.3 Security Framework and Implementation 65

5.3.1 Proposed Framework 65

5.3.2 Use of Cataloger 65

5.3.3 Ensuring Security 66

5.3.4 Security Wrapper for Service UI 66

5.3.5 Security wrapper for Caller 67

5.3.6 Auditor 67

5.3.7 Package Diagram 67

5.3.8 Use Cases 69

5.4 Validation 78

5.4.1 User Authentication: 78

5.4.2 Authorization: 79

5.4.3 Caller – Integrity Check 80

5.4.4 Successful Communication 81

5.5 Future Work 82

5.5.1 Secure JavaSpaces 82

5.5.2 Cataloger Security 83

5.5.3 Custom Server End Points for SORCER 83

5.5.4 Providing extra authentication capabilities 84

REFERENCES 85

APPENDICES 89

A: GRID INTERFACES 89

B: CONFIGURATION FILES FOR SECURE SERVER 91

C: POLICY FILES 94

viii

D: API SPECIFICATION 98

ix

TABLE OF FIGURES

2.1 Web Service Protocol Stack 4

2.2 WS Component Interaction 6

2.3 Positioning of Middleware in Distributed Systems 10

2.4 Grid Protocol Architecture 10

2.5 The Hour Glass Model 11

3.1 Discovery 17

3.2 Join Protocol 17

3.3 Lookup 18

3.4 Service Invocation 19

3.5 Context Model 27

3.6 SO in Sorcer 28

3.7 Execution of SO in SORCER 29

3.8 SORCER Conceptual View 30

3.9 Job Execution in SORCER 33

3.10 SORCER Functional Architecture 35

3.11 Service-based framework to support nested transactions 38

4.1 Security Considerations 42

4.2 Authentication using JAAS 45

4.3 Proxy Trust Verification Mechanism [17] 52

4.4 Determining Trust Equivalence 52

4.5 Smart Proxy Trust Verification [18] 54

x

5.1 Synchronous Exertion Execution in SORCER 61

5.2 Synchronous Exertion Execution in SORCER 62

5.3 SGrid Dispatcher Service UI 63

5.4 Caller Context 64

5.5 Security Framework 65

5.6 Package Diagram 69

5.7 Use Case: Accessing Services 70

5.8 Use Case: Secure S-Grid Providers 70

5.9 Use Case: SGrid Authorization – Access Denied 71

5.10 Use Case: SGrid Authorization – Access Granted 72

5.11 Use Case: Executing Legacy Code – File Modified 72

5.12 Use Case: Executing Legacy Code – File not modified 73

5.13 Class Diagram 74

5.14 Use Case: Auditor 75

5.15 Proxy Verification 76

5.16 Deployment Diagram 77

5.17 Incax Browser 78

5.18 User Authentication 79

5.19 Anonymous Log in – Authorization failed 80

5.20 Caller Integrity Check 81

5.21 Successful communication 82

xi

 ABSTRACT

A grid is a vast repository of virtual services. SORCER is a computational grid

environment based on the Service Oriented Paradigm. Security and trust, in SORCER,

are of utmost importance since the grid resources and the requestors connecting to

faceless service providers are at high risk. For example, if a virus code is sent for

computation, the grid resources are at high risk. Similarly, if rogue services are present

on the network, requestor’s privacy and security are at risk. A security framework for a

grid shall ensure access control to the federated services by authenticated and authorized

users so that the requestors and services are able to work with mutual–trust.

Today, grids are being used to build the systems which build up, rather than

replace, legacy components. This makes securing virtual services even more difficult.

The task of securing the SORCER grid can be accomplished by incorporating the

following security practices into the SORCER environment:

- Requestor (Client/Service) Identification and Authentication

- Proxy Verification (building trust)

- Authorization

- Resource Control and Containment

- Privacy and Integrity

- Non-Repudiation

- Accountability (Auditing)

xii

The security mechanism needs to be intrinsic to the grid, so that secure services

can be built without being concerned with security on a per service basis. This will

greatly reduce the effort required in patching security of individual services.

Our goal is to achieve Intrinsic Security by developing robust, scaleable, and

multi-layered security solutions for federated services.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Network can never be free from the fiendish attempts of malicious users who find

pride in causing harm to innocent users. Service Oriented Network (SON) is another such

network of Services running on a vast repository of resources. The resources and clients

of a SON are very vulnerable to malicious intent. For example a client’s privacy is

endangered if confidentiality is not ensured in data transfer. Resources running the

services are at high risk if a malicious user sends a file with virus for computation or

execution.

Although Service Oriented Computing is in earlier stages of research, there is a

need of an intrinsic security mechanism. One big advantage of intrinsic security

mechanism is that if intrinsic security is already provided, the developers will not have to

think of security of each of the different services. This will save huge time and effort in

patching security holes / compatibility issues due to difference in security mechanisms

for different service providers

SORCER is a grid environment based on Service Oriented Paradigm and thus

there is a need for security.

1.2 Challenges

The need for security in SORCER is further augmented since SORCER grid

promises zero (SORCER) installation on the client (requestor) side.

2

Zero installation is possible with the help of easily installable Service Browsers

such as IncaX. Like web browsers allow a client to browse various pages on the internet,

the service browsers enable the users to browse through the available services on the

network. The clients can search for the service they intend to use and get the results back

accordingly. Presently, there are not many service browsers available and IncaX is the

only one we have worked with.

Zero installation necessitates the use of mobile and dynamically downloaded

code. This means that for security, it is very important that the downloaded code comes

from trusted services and the services shall know who is trying to use them and what he

is authorized to do. Otherwise, there are many possible threats to the client, service and

the grid itself. Below gives a few cases that might occur if the grid security is not enabled

1.3 Problem Statement

A grid is a vast repository of services. Grids are being built with systems that

build up, rather than replace legacy components. This makes securing virtual services

more difficult. We need to develop robust, scaleable and multi layered solutions for

federated services without disturbing the legacy code. This is to be achieved by deploying

following security requirements in SORCER environment:

- Identification and Authentication

- Proxy Verification (building trust)

- Authorization

- Resource Control and Containment

- Privacy and Integrity

3

- Non-Repudiation

- Accountability (Auditing)

1.4 Thesis Organization

The Thesis report has been divided into five chapters:

Table 1.1 Thesis Organization

Part Chapters
 Problem Introduction 1
Service Oriented Architectures 2
Jini and Sorcer 3
Security Frameworks 4
Intrinsic Security Framework and 5

Chapter 1 provides an introduction to the aspects related problem statement of the

thesis. Chapter 2 gives an introduction to the concept of Service Oriented Architectures

(SOAs) and then discusses about Web Services and Service Grid architectures. After an

introduction to SOAs, The solution (Intrinsic Security) is basically been designed for

Service Oriented Grids (SOGs) and has been implemented for SORCER which is based

on Jini architecture. Hence an introduction to Jini and SORCER has been provided in

Chapter 3 of the report. After introduction to various parts of Jini and SORCER, we give

introduction to Security. Chapter 4 discusses various security frameworks which have

been used in implementation of the thesis. These security frameworks include JAAS and

Jini security frameworks. Chapter 5 introduces the proposed Security framework (the

solution) and its implementation to the SGrid framework.

4

CHAPTER 2

SERVICE ORIENTED ARCHITECTURES

Before we can go on with our specific solution for monitoring of Service Oriented

Programs, we need to understand the architecture of the environment we are dealing with.

This chapter discusses about different Service Oriented architectures like Web Services,

Grid Services (Globus), Jini, Rio and also looks into some of the work being done

currently in the field of Grid Monitoring and Autonomic Provisioning. This chapter also

provides a high level structural & operational view of the components. To make things

more concrete several ongoing projects are outlined as an illustration

2.1 Web Services

Figure 2.1 Web Service Protocol Stack

Web Service [1] is a protocol based Service Oriented Architecture. The above

figure (Figure 2.1) describes the protocol stacks involved in the WS architecture. It

consists of the following protocols

5

2.1.2 Service Discovery

This part of the architecture allows us to find Web Services which meet certain

requirements. This part is usually handled by UDDI (Universal Description, Discovery,

and Integration). One of the most interesting features of Web Services is that they are

self-describing. This means that, once you've located a Web Service, you can ask it to

'describe itself' and tell you what operations it supports and how to invoke it. This is

handled by the Web Services Description Language (WSDL).

2.1.3 Service Invocation

Invoking a Web Service (and, in general, any kind of distributed service such as a

CORBA object or an Enterprise Java Bean) involves passing messages between the client

and the server. SOAP (Simple Object Access Protocol) specifies how we should format

requests to the server, and how the server should format its responds. In theory, we could

use other service invocation languages (such as XML-RPC, or even some ad hoc XML

language). However, SOAP is by far the most popular choice for Web Services.

2.1.4 Transport

Invoking a Web Service (and, in general, any kind of distributed service such as a

CORBA object or an Enterprise Java Bean) involves passing messages between the client

and the server. SOAP (Simple Object Access Protocol) specifies how we should format

requests to the server, and how the server should format its responds. In theory, we could

6

use other service invocation languages (such as XML-RPC, or even some ad hoc XML

language). However, SOAP is by far the most popular choice for Web Services.

2.2 WS Interaction Model

Figure 2.2 WS Component Interaction

The following are the interactions between different web service components

• A client with no knowledge of what Web Service it is going to invoke, contacts a

UDDI registry for a particular type of service.

• The UDDI registry will reply, telling us what servers can provide us the service we

require (e.g. the temperature in US cities)

• We now know the location of a Web Service, but we have no idea of how to actually

invoke it. Hence we have to ask the Web Service to describe itself

• The Web Service replies in a language called WSDL.

7

• Now that via WSDL, we know the interface and invocation can be done in a language

called SOAP.

• The Web Service will reply with a SOAP response.

2.2.2 WS As Service Oriented Architecture

WS is clearly conjunctive as the WSDL defines the interface and different

services can be combined together in the form of WSDL. But still it lacks the versatility

and richness of CORBA or as a matter of fact other object oriented technologies when it

comes to definition of the interface. WS as an architecture may be independent of

platform, transport and environment. But still it’s heavily protocol dependant. History has

shown us that as protocols get used by systems in a large scale, it’s almost impossible to

change or improve. One of the best known examples is that of SMTP protocol which still

remains insecure in spite of the evolution of better protocols.

WS invariably are hosted in Application Severer or cluster of Application Servers.

Autonomic Monitoring and Management here means monitoring and management of the

applications inside the web servers or web servers themselves. The term monitoring is

used with application servers to describe about the monitoring of the applications running

inside and they do not address the monitoring of the programs run by the services.

2.3 Grid

The term “Grid” was coined in the mid-90s to refer to an advanced science and

engineering compute infrastructure [2]. A simplest analogy to help describe a grid is the

electricity grid [3]. When you turn on the power to your television you do not care where

8

your power comes from or when/how it was generated. While intuitively appealing, there

is however, a need for a clearer, more precise definition of a grid and grid computing.

This has been detected in literature and numerous formal as well as informal

[4][5]definitions have been proposed. This dissertation will stick to the extensive

definition presented in [2]:

“A grid is a large scale geographically distributed hardware and software

infrastructure composed of heterogeneous networked resources owned and shared by

multiple administrative organizations which are coordinated to provide transparent,

dependable, pervasive and consistent computing support to a wide range of applications.

These applications can perform any of the following: distributed computing, high

throughput computing, on-demand computing, data-intensive computing, collaborative

computing or multimedia computing”

As the definition implies, there exists different types of grids, most common being

[8]:

• Compute grid: distributed compute resources consisting of desktop, server and High

Performance Computing systems

• Data grid: distributed storage devices (tape/disk/... devices), along with the necessary

software

• Access grid: distributed audio-visual equipment (cameras, microphones, speakers ...)

set up to provide a virtual collective presentation room

Since SORCER is basically a computational grid (at east at its present capacity),

this thesis focuses mainly on computational grid systems. A computational grid system

can be defined as “a type of parallel and distributed system that enables sharing, selection

9

and aggregation of resources distributed across the multiple administrative domains based

on their availability, capability, performance, cost, and users’ quality of service

requirements” [9]. Grid systems allow one create supercomputer capability out of

collections of different computer types.

2.4 Grid Architecture

Since a grid is a virtual architecture its constituent components are individually

unimportant. The key concept is how these components work together as a unified

resource. The components include [10] (see Figure 2.3):

• Processors and Memory

• Networks and Communications Software

• Virtual Environment or Middleware: the grid computing counterpart of an OS2. Used

to configure, manage and maintain the grid environment. Usable by both administrators

and individual users.

• Remote Data Access and Retrieval.

10

Figure 2.3 Positioning of Middleware in Distributed Systems

The most important component is the virtual environment or middleware. Since a

real world distributed system encompasses a plethora of architectures, operating systems,

communication protocols... developing a decent distributed application without some

intermediate abstraction layer is literally impossible. The middleware provides exactly

that abstraction layer. It is responsible for turning a radically heterogeneous environment

into a virtual homogeneous one.

Figure 2.4 Grid Protocol Architecture

The model in Figure 2.5 is also known as the hourglass model. The narrow neck

of the hourglass defines a set of core abstractions and protocols onto which many

different high-level behaviors can be mapped (the top), and which themselves can be

mapped onto many different underlying technologies (the base) [19]

11

Figure 2.5 The Hour Glass Model

The next chapter covers another Service Oriented Architecture – Jini. Since Jini is

the base on which SORCER has been developed, it has been discussed in depth in the

coming chapter. Later we also discuss about Security provisions in the latest versions of

Jini and how these have been utilized to achieve security in a Service Oriented Grid

Environment.

12

CHAPTER 3

JINI AND SORCER

3.1 Introduction

Jini was the result of evolution of Java technology to make distributed computing

easier. Jini aims at making network devices and network computing into standard

components of networking environment. In this way all the devices can be available on

the network as services and interact with each other. For example, the alarm clock service

can ask the coffee maker service to switch on, 5 minutes before it wakes you up. In the

era of growing wireless networks, Jini offers higher level of interaction between different

services on the network [11].

Jini offers plug and play of devices and services. When a device gets connected

with the network, it can announce its presence and another service can locate it to

perform specific tasks. Mobile devices, computer hardware and software etc can

announce themselves as services available on the network.

Jini is not an acronym and doesn’t have a particular. It is basically a federation of

services and clients communicating using Jini protocols. The focus of the system is to

make the network a more dynamic entity that better reflects the dynamic nature of the

workgroup by enabling the ability to add and delete services flexibly. A Jini system

consists of the following parts: 1) A set of components that provides an infrastructure for

federating services in a distributed system 2) A programming model that supports and

encourages the production of reliable distributed services 3) Services that can be made

13

part of a federated Jini system and which offer functionality to any other member of the

federation [13].

The Jini system extends the Java application environment from a single virtual

machine to a network of machines. The Java application environment provides a good

computing platform for distributed computing because both code and data can move from

machine to machine. The environment has built-in security that allows the confidence to

run code downloaded from another machine. Although Jini has been written in Java

language, it does not put any constraint on the services/clients. The services and clients

can be written in any language with proper wrappers.

3.1.1 Services

A service is an entity on the network which can be used by another service, a

client (a person or another program). It can be a computation (proth), storage (File store,

Database), a communication channel to another user (Chat service), a software filter, a

hardware device (a printer), or another user.

Members of a Jini system federate in order to share access to services. The

services of a Jini system can be collected together for the performance of a particular

task. Services may make use of other services, and a client of one service may itself be a

service with clients of its own. The dynamic nature of a Jini system enables services to be

added or withdrawn from a federation at any time according to demand, need, or the

changing requirements of the workgroup using it.

Services in a Jini system communicate with each other by using a service

protocol, which is a set of interfaces written in the Java programming language. The set

14

of such protocols is open ended. The base Jini system defines a small number of such

protocols which define critical service interactions.

3.1.2 Service Registration (The Lookup Service)

Services are found and resolved by a lookup service. The lookup service is the

central bootstrapping mechanism for the system and provides the major point of contact

between the system and users of the system. In precise terms, a lookup service maps

interfaces indicating the functionality provided by a service to sets of objects that

implement the service. In addition, descriptive entries associated with a service allow

more fine-grained selection of services based on properties understandable to people.

Objects in a lookup service may include other lookup services; this provides

hierarchical lookup. Further, a lookup service may contain objects that encapsulate other

naming or directory services, providing a way for bridges to be built between a Jini

Lookup service and other forms of lookup service.

A service is added to a lookup service by a pair of protocols called discovery and

join--first the service locates an appropriate lookup service (by using the discovery

protocol), and then it joins it (by using the join protocol).

3.1.3 Java RMI (Remote Method Invocation)

Communication between services can be accomplished using Java Remote

Method Invocation. The infrastructure to support communication between services is not

itself a service that is discovered and used but is, rather, a part of the Jini technology

infrastructure. RMI provides mechanisms to find, activate, and garbage collect object

groups.

15

Fundamentally, RMI is a Java-programming-language-enabled extension to

traditional remote procedure call mechanisms. RMI allows not only data to be passed

from object to object around the network but full objects, including code. Much of the

simplicity of the Jini system is enabled by this ability to move code around the network in

a form that is encapsulated as an object.

3.1.4 Leasing

Access to many of the services in the Jini system environment is lease based. A

lease is a grant of guaranteed access over a time period. Each lease is negotiated between

the user of the service and the provider of the service as part of the service protocol: A

service is requested for some period; access is granted for some period, presumably

taking the request period into account. If a lease is not renewed before it is freed--either

because the resource is no longer needed, the client or network fails, or the lease is not

permitted to be renewed--then both the user and the provider of the resource may

conclude the resource can be freed.

Leases are either exclusive or non-exclusive. Exclusive leases insure that no one

else may take a lease on the resource during the period of the lease; non-exclusive leases

allow multiple users to share a resource.

3.1.5 Transaction Management

A series of operations, either within a single service or spanning multiple services,

can be wrapped in a transaction. The Jini Transaction interfaces supply a service protocol

needed to coordinate a two-phase commit. How transactions are implemented--and

16

indeed, the very semantics of the notion of a transaction--is left up to the service using

the interfaces.

3.1.6 Event Management

The Jini architecture supports distributed events. An object may allow other

objects to register interest in events in the object and receive a notification of the

occurrence of such an event. This enables distributed event-based programs to be written

with a variety of reliability and scalability guarantees.

3.1.7 Discovery and Lookup Protocols

Services form the interactive basis for a Jini system, both at the programming and

user interface levels. The details of the service architecture are best understood once the

Jini Discovery and Jini Lookup protocols are presented.

The heart of the Jini system is a trio of protocols called discovery, join, and

lookup. A pair of these protocols--discovery/join--occurs when a device is plugged in.

Discovery occurs when a service is looking for a lookup service with which to register.

Join occurs when a service has located a lookup service and wishes to join it. Lookup

occurs when a client or user needs to locate and invoke a service described by its

interface type (written in the Java programming language) and possibly, other attributes.

The following diagram outlines the discovery process.

17

Figure 3.1 Discovery

Discovery/Join is the process of adding a service to a Jini system. A service

provider is the originator of the service--a device or software, for example. First, the

service provider locates a lookup service by multicasting a request on the local network

for any lookup services to identify themselves (Figure 3.1). Then, a service object for the

service is loaded into the lookup service (Figure 3.2). This service object contains the

Java programming language interface for the service including the methods that users and

applications will invoke to execute the service, along with any other descriptive

attributes.

Figure 3.2 Join Protocol

18

Services must be able to find a lookup service; however, a service may delegate

the task of finding a lookup service to a third party. The service is now ready to be looked

up and used, as shown in the following diagram (Figure 3.3).

Figure 3.3 Lookup

A client locates an appropriate service by its type--that is, by its interface written

in the Java programming language--along with descriptive attributes which are used in a

user interface for the lookup service. The service object is loaded into the client.

The final stage is to invoke the service, as shown in the following diagram

(Figure 3.4). The service object's methods may implement a private protocol between

itself and the original service provider. Different implementations of the same service

interface can use completely different interaction protocols.

The ability to move objects and code from the service provider to the lookup

service and from there to the client of the service gives the service provider great freedom

in the communication patterns between the service and its clients. This code movement

also ensures that the service object held by the client and the service for which it is a

proxy are always synchronized, because the service object is supplied by the service

19

itself. The client only knows that it is dealing with an implementation of an interface

written in the Java programming language, so the code that implements the interface can

do whatever is needed to provide the service. Because this code came originally from the

service itself, the code can take advantage of implementation details of the service known

only to the code.

Figure 3.4 Service Invocation

The client interacts with a service via a set of interfaces written in the Java

programming language. These interfaces define the set of methods that can be used to

interact with the service. Programmatic interfaces are identified by the type system of the

Java programming language, and services can be found in a lookup service by asking for

those that support a particular interface. Finding a service this way ensures that the

program looking for the service will know how to use that service, because that use is

defined by the set of methods that are defined by the type.

Programmatic interfaces may be implemented either as RMI references to the

remote object that implements the service, as a local computation that provide all of the

20

service locally, or as some combination. Such combinations, called smart proxies,

implement some of the functions of a service locally and the remainder through remote

calls to a centralized implementation of the service.

A user interface can also be stored in the lookup service as an attribute of a

registered service. A user interface stored in the lookup service by a Jini service is an

implementation that allows the service to be directly manipulated by a user of the system.

In effect, a user interface for a service is a specialized form of the service

interface that enables a program, such as a browser, to step out of the way and let the

human user interact directly with a service.

In situations where no lookup service can be found, a client could use a technique

called peer lookup instead. In such situations, the client can send out the same

identification packet used by a lookup service to request service providers to register.

Service providers will then attempt to register with the client as though it were a lookup

service. The client can select those services it needs from the registration requests it

receives in response and drop or refuse the rest.

3.2 Jini Standard Services [24] [32]

Jini framework is included with some standard (default) services. These services

have special purpose defined and are critical to the proper functioning of the Jini

framework. These services have been outlined below:

21

3.2.1 The Lookup Service – Reggie

Reggie is the Jini service which is an implementation of “The Registrar”. It

registers services (including itself), removes registrations when the lease expires and can

perform unicast and multicast discovery to find different services available on the

network. Reggie is an activatable process which implies that it is started by RMI

activation daemon (rmid) only when it is first needed [22].

3.2.2 The Transaction Manager – Mahalo

Mahalo [23] is the transaction manager service provided by Jini framework. It

implements Jini TransactionManager interface but not the NestableTransactionManager

interface because nested transactions are not supported in mahalo.

3.2.3 The JavaSpaces – Outrigger

Outrigger [23] implements Jini JavaSpaces specification. It can be started either

as a transient or as a persistent space. Persistent spaces are useful for mini databases, but

storage updates slows it down and being activatable services they are considerably hard

to start. Transient spaces, however, are easier to start and if performance is the prime

concern they are preferable choices.

3.2.4 Lease Renewal Service – Norm

Norm [23] is another bookkeeping service in Jini Infrastructure which keeps track

of service leases. It is an activatable service and keeps a persistent transaction log of

22

leases and registrations. It is especially needed for the activatable and mobile services

which can hand over the lease to Norm and become safely inactive.

3.2.5 The Jini Lookup discovery Service – Fiddler

Fiddler [23] is the lookup discovery service in the Jini framework. Once a client

finds a service registrar (Reggie), it performs useful work that doesn't usually include

bookkeeping registrars. On the other hand, it is important for a client to talk to existing

registrars that actually exist, so the bookkeeping is a necessary activity.

Just as bookkeeping is outsourced to accountants, Jini clients can outsource the

bookkeeping of lookup services to lookup discovery service. This is an important pattern

in Jini: if you see common behavior, it can be made into a different service.

Fiddler can be started as an activatable service (with persistence) or directly from

the command line without persistence.

3.2.6 Event Mailbox Service – Mercury

Mercury [23] is the Jini event mailbox. service. This service has been introduced

so that it can collect events on behalf of the clients and send them the envents when the

clients specially request for them. This is needed because Activatable (and other) services

are not always available, and mobile services may actually be physically removed from

the network altogether. Event registrations may be problematic in this case: an activatable

service would be activated for every event sent to it and a mobile service simply wouldn't

get them.

23

3.3 SORCER

SORCER, [12] which stands for Service Oriented Computing Environment, is a

service-based concurrent engineering project which is based on evolution of the concepts

and lessons learned in the FIPER project [14], a $21.5 million program founded by NIST

(National Institute of Standards and Technology)[1][2][14[15] at GE Corporate Research

and Development. SORCER project aims to develop a means for global communication

of product information, data, methods, and tools while satisfying stringent product

performance requirements. The architecture of the SORCER system is designed to be

flexible enough to handle the needs of almost any product from aircraft engines to

manufactured goods such as plastics.

The architecture of the SORCER [31][30][29]system is service-based, network-

centric, and web-centric. This architecture houses the large pool of distributed services

that execute business logic and integrate tools and applications in the underlying

engineering domain. The web-centric architecture enables HTTP communication

between a web-based client and the SORCER system, as well as transparent access to the

globally distributed data and the pool of federated services. The individual services

requested by the SORCER system act on behalf of the web client, both in the role of

providing services (provider mode) and requesting services (requestor mode). When

requesting services, the SORCER system also brokers the requests, delegating them to

the appropriate registered service providers.

24

3.3.1 Service Oriented Program (SO)

Service Oriented Programming (SO) [31][30][29][12] is a paradigm for

distributed computing built over Object Oriented Programming (OOP) paradigm

emphasizing the point that problems can be modeled in terms of services rather than

objects. SO differs from OOP by focusing on what things can do whereas OOP focuses

on what things are and how they are constructed. SO defines set of core principles to

maintain interoperability of services over time. This section explains SO in greater detail.

The structured computing paradigm is a method based on a concept that a system

has data and functionality (behavior) separated into two distinct parts. A structured

program is composed of one or more units or modules such that each module is

composed of one or more functions (procedures, routines, subroutines, or methods,

depending on programming language). It is possible for a structured program to have

multiple levels or scopes, with functions defined inside other functions. Each scope can

contain variables, which cannot be seen in outer scopes. Usually the structured computing

is based on splitting programs into sub-sections, each with a single point of entry and of

exit, by using only structured looping constructs, often named "while", "repeat", "for"

with simple, hierarchical program flow structures. Often it is recommended that each

loop should only have one entry point and one exit point.

The object-oriented paradigm, on the other hand, defines a system as a collection

of interacting active objects. These objects do things and know things, or stated

equivalently they have functions and data that complement each other. Usually an object-

oriented system creates its own object space instead of accessing a data repository. This

25

object space constitutes an object-oriented program. The execution of the object-oriented

program is a collection of dialoguing objects (sending and receiving messages).

Building on the object-oriented paradigm is the service-oriented paradigm, in

which the objects are distributed, or more precisely they are network objects and play

some predefined roles. A service provider is an object that accepts messages from service

requestors to execute an item of work – a task. The task object is a service request – a

kind of elementary service executed by a service provider. A service broker is a

specialized service provider that executes a job – a compound request in terms of tasks

and other jobs. The job object is a service-oriented program that is dynamically bound to

all relevant and currently available service providers on the network. This collection of

service providers dynamically identified by a broker is called a job federation. This

federation is also called a job space. While this sounds similar to the object-oriented

paradigm, it really isn’t. In the object-oriented paradigm the object space is a program

itself; here the job space is the execution environment for the job itself and the job is a

service-oriented program that federates relevant providers at runtime. This changes the

game completely. In the former case the object space is a virtual machine, but in the latter

case the job space is the virtual federating network. This runtime federation is the jobs’

execution environment and the job object is a service-oriented program. In other words,

we apply the object-oriented concepts directly to the network in the service-oriented

paradigm. Tasks and jobs as elementary and compound service-oriented programs,

respectively, are called exertions.

The complexity of the problems to be solved is directly related to the kind and

quality of abstraction. The primary network abstraction still requires us to think in terms

26

of structure of many computing nodes and devices rather than the structure of the

problem we are trying to solve. Instead of modeling the multiple computing devices the

service-oriented programming provides the paradigm that allows us to model the problem

to be solved in terms of services and define the computing processes in terms of

exertions.

3.3.2 SO in SORCER

Representation of a SO is the key to any SOC framework. SORCER has a very

clear separation in defining a representation for a service, the data to that service and the

method to be invoked in that service.

A service is represented by what is called a ServiceMethod. A service method is a

reference to a Service Oriented Routine (SOR). A Service Provider runs a set of SORs

which are exposed to service requestors via a provider interface methods. Technically, a

SOR is represented by the pair (i, s), where i is the name of the provider interface and s is

the name of method selector.

Service data is what is to be passed as an argument to the SO in runtime. This

argument to SOR is called a context model, for short c. A context model [20] has a tree

structure and has name space and data in leaves nodes. The following figure (Figure 3.5)

depicts how a context model looks.

27

Figure 3.5 Context Model

A task is an elementary grid operation and is defined by data and what to do with

the data represented by ServiceMethod i.e. task T = (c, m) where m is the ServiceMethod

and c is the context.

A job is a compound exertion which is a collection of tasks and other jobs. The

job defines the task graph model and also encapsulates other information like the

execution and control strategy for the job. A job J = (c, m) where m is the ServiceMethod

and c is the context model in which, the data nodes are the tasks. The context model for

job also captures meta-information required for the defining the control strategy of

execution of the SO. This meta-model is also called the Control Context Model.

The definition of control strategy by the Control Context adds greater ability to

the representation of the SO. Control Context can define not only the task graphs but also

represent other conditional and iteration aspects involved in the execution of a SO.

A Job aggregation “oi” can be represented by Control Context model which can

support the following operation for the execution of SO: │, ║, ┤, *, [] where,

│(e1, …, en) means sequential execution of SO

║(e1, …, en) means parallel execution

┤ (e1, e2, e3) – conditional

28

*(e1) - iteration

[](e1, …, en) – selected

It can be seen that both the task T and job J has same structure. It contains data

represented in the form of a context model and also method which says what to do with

that data. Hence both job and task can be represented by an exertion which is a notion for

a distributed activity which can be either atomic or compound. The following UML

describes the UML representation of a SO in SORCER. This UML shows the client site

representation of SO and service site representation of SO. Essentially both represent the

same thing except for some added functionalities in terms of additional operations on

objects representing the SO in server site.

Figure 3.6 SO in Sorcer

29

3.3.3 Service Oriented Runtime Execution Environment (SOREE)

In SORCER, the SOREE framework is designed using the Jini Network

Architecture. Some of the core Jini services used in the SOREE are as follows:

• Lookup Service: For dynamic discovery of services in the network based on rich

template matching

• Transaction Manager: For implementing the transactional semantics between service

providers.

• Java Spaces: For space based computing where tasks can be dropped and providers

can pick up according to their capabilities

3.3.4 Execution of SO in SORCER

Service

Requestor

Exertion

Space

Service

Catalog

Service

Provider

Lookup

Service

Discovery

and lookup

Discovery

and lookup

Lookup

Discovery,

registration and

leasing

Drop

task or job

Execute task

Get

task

Execute job

Get

job

Service

Broker

Execute task

Lookup

Discovery

and lookup

Figure 3.7 Execution of SO in SORCER

30

The above diagram depicts a typical execution of exertions in an SO framework.

The requestor creates a SO (task/job) and submits it to the Service Broker or directly to a

Service Provider. The Service Provider / Service provider are found by the Service

Requestor in a dynamic fashion with the help of the Service Method defined in the

exertion.

Figure 3.8 SORCER Conceptual View

The lookup service (LUS) and the cataloger help in the dynamic discovery of

services in a SO framework. This dynamic discovery can be done by lookup service in

many ways. In the specific implementation of JINI, it works in the following way. When

Services bootstrap, they either listen for a multi cast announcement made by all the

lookup services (Multicast announcement protocol) in the network or sends multicast

packets to other LUS requesting for information about the location of the LUS (Multicast

announcement protocol). Once it gets a multicast packet, it knows the location of a

31

lookup service. Then the ServcieProvider registers with the lookup service the proxy for

its service. Thus all the lookup service in the network is aware of any particular service.

Lookup services require that the client maintain leases so that they can cleanup a stale

proxy if a client crashes or does not renew leases due to some reasons.

Though lookup service contains all the proxies for the services in the grid, it’s

important for the framework to have a Catalog Service. A catalog helps in three ways.

The first one is that the catalog is on a constant lookout for changes in all lookup services

and keeps a dynamic catalog of all the services in the lookups and maintains a cache to

aid fast discovery. The second one is more important one. It functions as a filter to filter

out only required services by the framework. To understand the third use, it requires an

understanding of how services are requested from a lookup service. Typically a requestor

will ask the lookup for a particular proxy based on a top level interface which a service

implements and some other attributes. But for this, the requestor requires the class

definition of interface. This may not be possible in service oriented grids because it

requires that if a new service joins the federation, all other members in the federation

must be updated with the class definition of the new interface to be able to talk to the new

service. Service Catalogs can be used to solve this interesting problem.

Assume there is a global interface called Servicer which contains one method

called “service(Exertion)”.

public interface Servicer {

// Put into action the specifiedexertion

public Exertion service(Exertion exertion) throws

 RemoteException, ExertionException;

… }

32

All Providers will implement their own interface say XXInterface and extend an

abstract ServiceProvider This abstract ServiceProvider implements the global interface

Servicer. The implementation of service method of the global interface is same for all

providers. They will look into ServiceMethod of the SO and do a “self inspection” and

check if it implements the interface and method selector defined in the Service Method. If

it does, it will call on itself the method defined by the method selector by passing the data

in the SO as argument to it. This way all Service providers know one interface Servicer,

and all providers are themselves Servicers forming a true P2P federation. Now a service

like Service Cataloger will dynamically find all proxies for all ServiceProviders. Note

that at this point the Cataloger does not have the interface definition of any of the

services. The cataloger then via mechanism of reflection will find out the name of all

interfaces a service implements and the methods in the interfaces. It then keeps a map of

this information. Now a requestor can directly ask the catalog to give it a service defined

by a ServiceMethod because cataloger knows the name of all the Interfaces and the

methods contained in all the interfaces. Once the requestor gets the proxy, it just calls

service method on the proxy and passes a SO.

A service broker is a specialized service which knows how to co-ordinate the

execution of compound SOS. It might also employ complex scheduling algorithms. It

might dispatch the exertions in two ways. It might ask the Cataloger to give a proxy for a

particular service defined by the ServiceMethod and request for execution or it might put

the SO in space for service providers to pick up from space by themselves.

The collection of Service Providers formed for executing the SO by a broker is

called a Federation. The ServiceMethod in the exertion define the matching provider

33

and thus the exertions get bound to the right service providers during runtime execution

of the SO by broker.

The below figure (Figure 3.9) explains the implementation details of the core

components in the system which involves in job execution. Jobbers use dispatchers to

dispatch jobs to the right providers in the grid and thus create the federation required for

job execution. In SORCER environment there are four types of dispatchers that

implement different type for control strategies. These include sequential and parallel

dispatchers for Catalog and Space. A relevant dispatcher is assigned to a jobber by the

dispatcher factory based on the information captured in the ControlContext Model of the

job.

Figure 3.9 Job Execution in SORCER

34

Dispatchers does service discovery via Cataloger or via ProviderAccessor. While

Cataloger is a service in itself whose responsibility is to find other service providers

dynamically, ProviderAccessor is a client side utility which helps in discovery of

services. For dropping exertions in space, the dispatcher does not require any discovery

as providers themselves pick up the exertion and execute them.

3.3.5 SORCER Functional Architecture

Framework

This sections summarizes the description of SO given in SORCER and extends

the explanation of capabilities and features of SORCER as a P2P (Peer to Peer)

environment.

35

Figure 3.10 SORCER Functional Architecture

The P2P service-oriented framework targets complex business and engineering

transactions. A transaction is composed of a sequence of activities with specific

precedence relationships. The grid contains service providers that offer one or more

services to other peers on the overlay network. Service providers do not have mutual

associations prior to the transaction; they come together (federate) dynamically for a

specific transaction. Each provider in the federation performs its services in a

choreographed sequence. Once the transaction is complete, the federation dissolves and

the providers disperse and seek other transactions to join. The architecture is service

centric in which a service is defined as an independent self-sustaining entity performing a

specific network activity. Each service is defined by a well-known public interface. A

service provider that plans to offer a service implements its interface or multiple

interfaces (services) to be eligible for participating in federations.

36

The same provider can provide multiple services in the same federation and

different providers can provide the same service in different federations. The service grid

is dynamic in which new services can enter the overlay network and existing services can

leave the network at any instance. The service-based architecture is resilient, self-healing,

and self-managing. The key to the resilience is the transparency of search and seamless

substitution of one service with another. The architecture allows services to share data by

using specialized data services or a shared data repository (distributed file store). The

architecture also allows asynchronous execution of activities such that an activity can

wait for a service to be available

The architecture uses Jini network technology (Jini Architecture Specification

2000; Jini.org; Edwards, 2000) and Java Spaces technology (Freeman, 1999; Halter,

2002) for implementing the service-based overlay network described above. However,

the proposed service-oriented architecture is abstract and can be implemented using any

distributed network technology that provides support for dynamic discovery of resources

and a rich software development environment.

Design

A UML-diagram showing the framework of the system developed is illustrated in

Figure 3.11.The core of the architecture consists of service providers and service brokers

interacting with lookup registries, a catalog of services, and exertion shared space. In

general, a service provider executes a task (elementary exertion), and a service broker

executes a job (compound exertion or a nested transaction). While executing a job, the

service broker (Figure 3.11) coordinates exertion execution within the nested transaction.

37

It interprets the transaction map supplied by the service requestor and completes the

nested exertions accordingly as presented in the transaction map.

At the start of the transaction the service broker reads all the exertions in the

transaction and executes those exertions, which have no precedence relationships. At

each step it executes the services for which all the precedence relationships have been

satisfied (services complete). Whenever it gets a notification of a service being completed

it evaluates the remaining unfinished activities and invokes one or more exertions based

on their precedence relationships.

38

Uses

Requests

creationService

Broker Creates

Invokes

Exertion

Dispatcher

Catalog Exertion

Dispatcher

Space Exertion

Dispatcher

Service

Broker

Interface

Service

Provider

Dispatcher

Factory

Interface

Dispatcher

Factory

Service

Joiner

Exertion

Space

Bootstraps &

Manages

Service

Catalog

Service

Requestor

Service

Requestor

Interface

Service

Provider

Proxy

Service

Provider

Interface

Uses

Lookup

Registry

Dispatcher

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Servicer

Figure 3.11 Service-based framework to support nested transactions

The service broker, by using an appropriate exertion dispatcher, can directly

access the service provider through a service catalog and select a provider or drop the

exertion into Exertion Space for the first available provider to process the request. While

the service broker is servicing a job, a nested job within the job being currently serviced

can be executed locally, or can be dropped into the Exertion Space, or passed on directly

to another service broker. Another available service broker can then federate and

39

collaborate in the job execution by executing the nested job, and so on. Thus not only can

the service providers federate to execute a job for a particular service broker, but the

service brokers can also federate along with other service providers. The federated

brokers with the originating broker execute the nested jobs while the regular service

providers execute all the tasks within all jobs including the originating one. A service

broker uses a factory design pattern to request a relevant exertion dispatcher that matches

the control structure of the executed job.

Two main types of exertion dispatchers are used: a catalog exertion dispatcher

and a space exertion dispatcher. The catalog exertion dispatcher finds needed service

providers using the service catalog. The space exertion dispatcher drops exertion into the

exertion space to be picked up by matching available service providers. When the

exertion is picked up from the space and it is executed by a matching provider then the

provider returns it into the space and the space exertion dispatcher gets it back from the

space for the service broker. The service grid also defines a common service provider

interface (Provider that extends the top level interface Servicer) and a set of utilities to

create and register providers with the grid as service peers. A Service Joiner is used for

bootstrapping service providers and also for maintaining leases on registered proxies. The

grid service brokers can also use dynamic provisioning based on Rio technology (Rio

Project) for deploying and maintaining required federation. For a direct connection to the

service provider the provider can either use discovery to find a lookup service or use a

Service Catalog provider for selecting a service. The lookup service caches all the proxies

for services that have registered with it for a particular group(s) of services. The Catalog

provider is a service-grid cache that periodically polls all relevant lookup services and

40

maintains a cache of all the proxies that are registered with the lookup services for a

particular group or groups of services.

Thus, multiple service catalogs may be used for different logical overlay sub

networks. The provider has to discover lookup services each time it needs to use them

where as it finds one of required catalogs only once when it (provider) is instantiated and

then the Catalog continues service discovery for the provider. In case the provider finds

an available service using a lookup registry or the Catalog, a proxy for the service is

downloaded on to the provider who invokes the service by calling service (Exertion).

Alternately the provider submits the service request to an Exertion Space that holds the

request and waits for a matching service provider to accept the exertion. This is essential

so that the transaction does not have to abort due to non-availability of a service. This

also helps in better load balancing of the services since available providers will act at

their own pace to process the exertions in the space. A notification management

framework (Lapinski 2002) based on a notification provider allows federated providers

notify the service requestor on their collaborative actions. Additionally the File Store

provider (Sobolewski 2003) allows federated providers to share exertion input as well as

output data is a uniform service-oriented way.

41

CHAPTER 4

SECURITY FRAMEWORK

4.1 Introduction

Security in any framework is critical. In the grid based on the Jini (Service

Oriented) framework security becomes a big issue because mobile code is involved.

Downloadable code poses complicated security issues. A secure grid framework shall be

able to provide an environment of mutual trust between requestor and provider.

4.2 Defining trust

4.2.1 Trusted Component

A trusted component is a component which must work correctly to ensure that the

security requirements of a particular framework are met.

4.2.2 Trustworthy Component

A trustworthy component is a component which actually has an acceptable level

of assurance that the component actually performs its security related responsibilities.

Both the concepts seem similar. However, it is unfortunate and noteworthy that

the trusted components may not be trustworthy. A simple real life example is when a

person downloads a file from the internet and runs a virus scans on it. The file now

becomes a trusted component, however, if the anti-virus software does not have updated

definitions, the anti-virus and the downloaded file both are not trustworthy.

42

A mutual-trust environment has to be built so that both the requestor and

providers consider each other trustworthy and shall be able to demonstrate this trust. To

design a secure framework we must investigate the grey areas where security can be

breached.

4.3 What is Insecure

The breach of security can occur at various points in a Service Oriented

environment based on Jini Framework. In the Figure 4.1 grey areas represent the areas

where the security lapse may occur when the mobile code is downloaded

Figure 4.1 Security Considerations

4.3.2 Lookup Service

A requestor locates a service by querying a Lookup Service (LUS, service

locator). LUS provides the requestor with a proxy which represents the service. The

requestor calls a method on this proxy and the call is transferred to the remote service,

where the method is executed.

43

A malicious lookup service may provide a fake proxy to the client. The client

sends or uploads his data assuming that the obtained proxy is trusted. This data can be

provided to any malicious user who has started the malicious look up service. Thus the

client’s identity and private data are at high risk

4.3.3 Service Provider

If a malicious Service Provider sends a proxy to the requestor and doesn’t

authenticate itself to the requestor, it can get access to requestor’s data. This data can be

disclosed or misused.

4.3.4 Service Requestor

Service requestor code (Service UI) may not authenticate to the Service provider.

It can use requestor’s credentials and impersonate the user. Also, it may generate false

results without even contacting the service provider.

4.3.5 Proxy

Service proxy shall perform integrity checks so that the ‘man in the middle’

attacks can be avoided. If this is not done, the grid becomes susceptible to 3rd party

attacks (Man in the Middle attacks). In this case, both the client and the grid resources are

compromised.

44

Java and Jini provide API for ensuring security in such scenarios. A trust

environment can be built between requestor and provider with the help of the intrinsic

security mechanisms given in Chapter 1.

4.4 Authentication

Authentication or Identification refers to the process of establishig trust about the

entity which is trying to use the services. Java provides Java API for Authentication and

Authorization (JAAS) API to be able to achieve this. Although the main challenge in the

case of Service Oriented Grid Computing is that authentication needs to be done using

downloaded code.

4.4.1 JAAS

JAAS basically grants permission based on who is executing the code instead of

granting permissions based on the location of the code (downloaded / local). This model

is similar to the authentication and authorization model used in Unix, Windows and other

operating systems.

JAAS uses Pluggable Authentication Modules (PAM) for authentication. The

mechanism is pluggable because it allows an authentication mechanism to be dropped

into the code environment and which is then used to authenticate users running the java

code [14]. This pluggable authentication mechanism can be either a Graphical User

Interface (GUI) asking for username and password or a GUI asking for Java card or some

other device which contains user’s credentials. If the authentication succeeds, the user is

given access to that particular code (depending upon the privileges the Subject of the user

45

is allowed to have). Different modules can be plugged in, including Kerberos and PKI

implementations. With the advent of JDK 1.4, JAAS been added to core java APIs.

4.4.2 JAAS Framework for Authentication [36]

Figure 4.2 Authentication using JAAS

4.5 Authorization

4.5.1 Subject (doAs() and doAsprivileged)

As defined already, a Subject defines a group of related information, for a single

entity such as a person. This information can include the person’s (Subject’s)

identifications and security related information such as his passwords, security codes etc.

Authorization requires that the persons identity be known and checked for access[14].

The doAs() and doAsPrivileged() methods in the Subject class asks the

code to run as the Subject and this allows the AccessController to check if the particular

subject (logged in) has the authorization to run that piece of code.

46

doAs(Subject subject, java.security.PrivilegedAction

 action)

doAs(Subject subject,

 java.security.PrivilegedExceptionAction

action)

doAsPrivileged(Subject subject,

 java.security.PrivilegedAction action,

 java.security.AccessControlContext acc)

doAsPrivileged(Subject subject,

 java.security.PrivilegedExceptionAction

action,

 java.security.AccessControlContext acc)

The doAs() method This method first retrieves the current Thread's

AccessControlContext via AccessController.getContext, and then

instantiates a new AccessControlContext using the retrieved context along with a

new SubjectDomainCombiner (constructed using the provided Subject). Finally,

this method invokes AccessController.doPrivileged, passing it the provided

PrivilegedExceptionAction, as well as the newly constructed

AccessControlContext[25].

The doAsPrivileged() method behaves exactly as Subject.doAs, except

that instead of retrieving the current Thread's AccessControlContext, it uses the

provided AccessControlContext. If the provided AccessControlContext is

47

null, this method instantiates a new AccessControlContext with an empty

collection of ProtectionDomains[25].

4.5.2 Guarded Objects

Gaurded Objects [39] are represented by the Class

java.security.GaurdedObject. These objects are used to protect access to other

objects. The getObject() method provides access control to the protected object.

This is done by invoking checkGaurd method of java.security.Guard Class. If

the access is allowed, the reference is returned, otherwise, SecurityException is

thrown.

4.5.3 Permissions/ Policy Objects

The version 2.0 (Davis Release) of Jini has provided a wide variety of API for

enabling security in framework based on Jini. Following additions have been made in Jini

2.0 from the previous versions of Jini [38] [32] :

• Configuration: Mechanisms for building and deploying configurable and secure

services

• Exporter: Exporter provides abstractions for exporting the remote objects and

obtaining the server side information for executing the remote call

• Proxy Preparation: The feature of preparing a proxy before a remote call enables the

requestor to put constraints on the proxy to ensure communication in a trusted

environment.

48

The Jini API used for building the desired security framework has been outlined

in the respective sub-headings given below.

4.6 Invocation Constraints

The security considerations act as constraints on normal execution: something

that might have been allowed will be restricted after the constraints have been set. For

example, a requestor may put the constraint that communications be encrypted

(Confidentiality.YES). It might not want to know many details of how this has

been done (This depends on middleware which can be either the standard or customized

based on requirements). But if it hasn't been done, then the requestor will not accept the

communication [11].

Jini 2.0 doesn’t specify how the constraint is implemented but just what it is.

However, in the Jini’s default implementation of server endpoints such as

SslServerEndpoint this has been predefined. An explanation of these constraints

has been given below:

4.6.1 Integrity

Integrity constraints are the constraints to enforce Integrity during the

communication. Integrity.YES enforces detection of alteration of the message by

third parties and if detected, the communication is refused and an exception is thrown.

Integrity.NO constraint is put when the detection is not necessary

4.6.2 Confidentiality

49

Confidentiality constraints are set to check whether third party listeners can

interpret the communication. If Confidentiality.YES constraint is specified, the

message is bound to be transimitted so that it can not be easily interpreted by third party

listeners. If Confidentiality.NO constraint is specified, the message is transmited

without any use of encryption

4.6.3 ClientAuthentication

ClientAuthentication.YES constraint specifies that the requestor shall

authenticate to the server. Again it is to be noted that the constraint doesn’t specify how

the requestor should authenticate to the server. This is implementation dependent. Jini’s

standard SslServerEndpoint, KerberosServerEndpoint etc. have their own

mechanisms of satisfying this constraint. For example, SslServerEndpoint uses the

requestor’s certificate (with the private credentials) for ClientAuthentication.

ClientAuthentication.NO constraint instructs the requestor not to

authenticate to the server. This means that the requestor refuses to prove his identity. This

is important in the applications where the requestors need to preserve their privacy

4.6.4 ServerAuthentication

ServerAuthentication.YES constraint enforces the server to authenticate

to the requestor. In many applications the requestor needs to know whether it is dealing

with the right service provider.

ServerAuthentication.NO constraint enforces the server to remain

anonymous.

50

4.6.5 Delegation

Delegation.YES constraint allows the server to authenticate as requestor in

remote calls made and received by the server. This is important especially in the cases of

a grid technology where one service provider sends a task across to another service

provider (third service provider) on behalf of the requestor. Since the requestor’s identity

may matter to the third service provider, for example for Authorization. Jini’s

SslServerEndpoint does not support direct delegation, since by design SSL doesn’t

allow requestor’s private credentials to be passed. However,

KerbersoServerEndpoint does support Delegation.

Delegation.NO constraint can be set to disallow the server from impersonating

the client while talking to a third party.

There are other constraints which control which principals of the server and

requestor shall be authenticated and which principals shall not be [16]:

ClientMinPrincipal

ClientMaxPrincipal

ClientMinPrincipalType

ClientMaxPrincipalType

ServerMinPrincipal

However, there is no ServerMaxPrincipal Constraint since requestor shall

not need to impose such a constraint

4.7 Proxy-Trust (Proxy-Verification)

51

The privilege of proxy trust is very important in the frameworks which

incorporate mobile code. The requestor must be able to deicide whether it has received a

proxy from the right service and also whether this proxy does the right thing. For

example if the requestor debits $100 from a bank service how will he trust whether the

proxy doesn’t debit $1000 from his account and deposit the remaining $1000 somewhere

else. The requestor shall be able to explicitly decide if it trusts the proxy especially for

communications where security is important.

There are two different cases where proxy trust needs to established:

4.7.1 Local Code

If all parts of the proxy code are local then the client can decide to trust the proxy.

Effectively, since the client has established that the proxy code is not downloaded code,

he is using his local code which he can trust.

4.7.2 Downloaded Code

The main cause of concern comes when the proxy code is downloaded and the

client needs to establish whether the proxy can be trusted. One easy way is to go the

service provider and ask the service if it trusts the proxy that the requestor has received.

Note that the integrity of the downloaded code has already bean established in the

previous section. So now the “trust” that the downloaded code is not changed by anyone

is already in place

52

Figure 4.3 Proxy Trust Verification Mechanism [17]

Basically, we are dealing with transitivity here where the requestor trusts the

service, if it can establish that the service trusts the proxy then it can also trust the proxy.

Figure 4.4 Determining Trust Equivalence

However, this is where the “chicken and egg” nature of the problem comes into

picture. Since the requestor can contact the service only through a proxy, how can the

requestor contact the service via a proxy it doesn’t trust (as of now). This is a problem

which needs bootstrapping solution. The client uses a bootstrap proxy to verify the trust

53

of the downloaded proxy. The mechanism (Figure 4.3 and Figure 4.4) used for proxy

verification using a bootstrap proxy has been given below:

The requestor asks the downloaded (untrusted) proxy for a bootstrap proxy. After

obtaining the bootstrap proxy, it ensures that all the code in the bootstrap proxy can be

resolved locally. This is done since the client can explicitly trust only the local classes.

After obtaining a bootstrap proxy, the requestor shall then put

ServerAuthentication constraint which would enforce the service to authenticate

itself to the requestor. Once the service is authenticated, the requestor trusts the service

and now can ask the service if it trusts the downloaded proxy.

Requestor now invokes getProxyVerifier() method on S which returns a

TrustVerifier object which it then uses to decide if the service proxy is trusted.

Requestor calls isTrustedObject(Object ServiceProxy, …) to

verify whether the downloaded service proxy can be trusted. The algorithm which the

TrustVerifier uses to verify whether the service can trust the service proxy, is

dependente upon the service itself. Jini’s default algorithm relies on object equality

semantics. The TrustVeirifier returned by the service contains a canonical service

proxy instance. The isTrustedObject() method compares the canonical instance

and the downloaded instance and if the objects match then the downloaded proxy is

considered trusted.

if isTrustedObject() returns true, the service proxy is supposed to be

completely trusted by the (trusted) service. The requestor and service provider are now

free to communicate since the trust of the downloaded code is established.

54

The Figure 4.5 below gives a pictorial representation of smart proxy verification

procedure in Jini framework

Figure 4.5 Smart Proxy Trust Verification [18]

55

However, these steps are mostly hidden from the developer. For example,

SslServerEndpoint automatically takes care of these constraints and this

mechanism on setting a flag while preparing the proxy. However, this will be discussed

further in the chapter where implementation and validation has been discussed.

4.8 Integrity

Integrity is needed to detect and take measures in case of “Man in the middle” or

third party attacks. For example if the requestor sends a message to the bang service to

‘withdraw $100’, and someone in the middle change the message content to ‘withdraw

$150 and transfer $50 to Alice”. The banking service shall be able to detect this intrusion

and act accordingly. Therefore, Integrity is important in two cases – when the code is

downloaded and when the communication is taking place.

4.8.1 Downloaded Code

In case of downloaded code, the requestor must be able to check that the code it

has downloaded (from a particular URI) was not changed by a third party. For example a

malicious user ‘A’ can change the jar file loaded at the rmic-codebase of a service. When

the requestor downloads this file assuming it to be the file pointed to by the proxy of the

service, it is at very high risk of compromising sensitive data and even its identity.

Usually, the URIs are resolved to HTTP URLS. HTTP doesn’t provide any

intrinsic methods to provide integrity [16]. A conceivable solution is HTTPS URLs,

which would guaranty confidentiality and server authentication. However there are a few

basic disadvantages in using HTTPS in this particular case:

56

• HTTPS server would require a Private Key for authentication, Similarly, the

requestor would require his own private key. Trust-stores would also be required. The

whole mechanism is an extra overhead attached to the whole process.

• HTTPS also provides encryption although all the requestor may care about is just

integrity.

Jini provides with an easy solution to provide integrity of the downloaded code

without requiring overhead of encryption. It provides a new URL scheme type called

HTTPMD where MD stands for message digest. So the server now needs to calculate the

message digest of all its jar files and specify it’s codebase as a list of HTTPMD URLs.

An example of HTTPMD URL is:

httpmd://neem.cs.ttu.edu:2044/classes/dispatcher-

dl.jar;md5=40c8812dce7b9f8fb0a3b364af

However, this scheme is introduced with jar files only and not with directories

and class files on the server.

Once the code is downloaded its Message Digest is calculated using various

classes provided in the net.jini.url.httpmd package. If the two message digests

match, the requestor trusts the integrity of the downloaded code (however, it may not yet

trust the service provider), otherwise WrongMessageDigestException is thrown.

One important thing to note about HTTPMD URL scheme is that it is an non-

standard scheme and hence not recognized by standard Java Virtual Machine. The

HTTPMD handler is a part of Jini package and hence it needs to be installed on JVM by

specifying -Djava.protocol.handler.pkgs=net.jini.url property. It is

57

better to start both the services as well as the requestor with this property for smooth

functioning.

4.8.2 Communication Integrity

Communication Integrity is required for remote calls between the requestor and

the service provider. For this, the server shall be started with SSL, HTTPS, Kerberos or

an custom endpoint which supports integrity. Protocols like TCP don’t support integrity.

The Integrity.YES constraint shall be set on the proxy at least from either the server

or the client side to be able to ensure that the transaction actually takes place securely

(integrity enabled). If for example the service provider uses TCP endpoint and the client

specifies Integrity.YES constraint,

net.jini.io.UnsupportedConstraintException will be thrown at the

client side.

4.9 Privacy

Privacy is same as confidentiality. It basically means that the communication

between the requestor and service shall not be understandable by a third party. This is

achieved by encryption. Encryption can be symmetric or asymmetric, this is specific to

implementation. In Jini, client or the server (preferably client) can enforce confidentiality

by injecting Confidentiality.YES invocation constraint on the proxy.

Jini doesn’t specify how this constraint shall be specified and hence this

specification can be customized by the developer. However, Jini’s default classes such as

58

SslServerEndpoint do have inbuilt mechanism to ensure confidentiality, given this

constraint.

4.10 Non-Repudiation

Non–repudiation as the name suggests, means that requestor or service provider

shall not be able to repudiate a communication once the message is sent. This is ensured

when each entity signs the message it sends. Signature of an entity is the message’s

message digest signed by its private key.

4.11 Accountability/Auditing

Accounting or Auditing means recording all critical communications between

Requestor and Services on the grid. The critical communications may include:

• Authenitcation communication (Who tried to log in at what time)

• File update/delete/execute request

• Trial for Un-Authorized access (whenever AccessException is thrown)

• Whenever a Security Exception is thrown at the provider or the requestor side

• Other messages which may be critical specific to application design and

implementation

This will help the administrators to locate the cause, if a security breach occurs

59

CHAPTER 5

SECURE FRAMEWORK AND VALIDATION

This chapter will cover the Security framework proposed for Service Oriented

Computing Environment and the validation of the proposed framework in SORCER. I

have chosen my validation case as SGrid, the computational grid framework created in

SORCER.

5.1 SGrid – Introduction

As the exertions (jobs, tasks) are submitted via a service provider, synchronous or

asynchronous mechanism can be used to send the jobs from the service providers to

callers (explained below) and taskers. In my validation I have secured the channel where

the jobs are sent via synchronous mode (jobber-cataloger) to callers.

In SGrid or SORCER in general there are three types of brokers which provide

synchronous and asynchronous modes of exertion execution. These three brokers are

(refer Figure 5.1):

• Jobber

• Cataloger

• Exertion Space

5.1.1 Jobber (Coordination broker)

Jobber is a service provider in SORCER framework which provides the services

of a coordination broker. Jobber can be involved in both synchronous and asynchronous

60

modes of exertion execution. Figures 5.1 and 5.2 depict the functioning of the various

brokers in the synchronous and asynchronous modes.

This is further explained in the sub-sections below.

5.1.2 Cataloger (Synchronous broker)

Cataloger is the Synchronous broker. It is called synchronous because proxy for a

particular provider (Caller in this case) can be obtained and the exertion can be sent to it

either directly or via a jobber (coordinated). Hence the exertion is executed in a

synchronous way. The direct and coordinated synchronous approaches have been shown

in the figure.

61

Figure 5.1 Synchronous Exertion Execution in SORCER

5.1.3 Exertion Space (Asynchronous broker)

Exertion space is the asynchronous broker. The asynchronous behavior is

obtained by applying the pull technology. Either jobber (coordination) or the service

provider can place exertions in the space. The Callers are listening to the space and when

an exertion is put in the space, it is automatically taken by of the callers. Since any of the

callers can take the job from the space, the execution is asynchronous. A caller with more

amount of processing power (or network connectivity) is the one who is more probable of

taking the exertion from the space. Hence this does bring some load balancing in the

system. The asynchronous approach has been depicted in the Figure 5.2.

62

Figure 5.2 Synchronous Exertion Execution in SORCER

Presently, SORCER exertion space is same as JavaSpaces used in the Jini

Framework. However, as mentioned in the Future work section, using and developing

secure exertion spaces will surely be an important task in future. Since the prime

objective of a JavaSpace is to be publicly available, this task becomes substantially

difficult.

If the secure framework cannot control who is putting the jobs in the exertion

space and who is taking the job form it, the whole framework can easily be compromised.

Since securing exertion space is a big problem in itself and it was outside the

scope of my thesis problem, hence, I have used “synchronous” channel of job execution

which uses the Cataloger (Synchronous Broker) for the job execution.

5.2 S-Grid Components

63

5.2.1 SGrid Dispatcher

SGrid Dispatcher is the service provider which publishes a Service UI which lets

the requestor enter the inputs, outputs, arguments and the application name etc for the

job. Dispatcher then encapsulates it into a caller context and sends it to the Jobber.

The Service UI of the dispatcher looks like the one give below:

Figure 5.3 SGrid Dispatcher Service UI

The Arguments tab lets the requestor specify the command line arguments to be

specified to the executable when the Caller executes it.

The Attributes tab gives the user the flexibility to choose a platform, host or

domain where he wants his inputs to be dispatched and executed. By default, the user’s

request is sent to any compute resource in the grid which is ready to process the job.

From the Executables tab the user can specify the executables (for different

platforms) and their locations (from where Caller can download them if needed).

64

5.2.2 Caller

Callers are generic SORCER service providers which make system calls. These

callers are platform independent service providers and have the capability of

downloading (using Filestore [34]) required binaries (based on the OS) or source code

required to make the system call. Callers can also run a java code and send the results

either to the requestor or store them somewhere as specified in Caller context. The Figure

5.4 provides a pictorial idea of caller context.

Figure 5.4 Caller Context

65

5.2.3 File Store

Caller has the capability of downloading binaries or source files with the help of

FileStore. FileStore is a SORCER service provider which allows users and other

providers to upload and download required files from the database.

5.3 Security Framework and Implementation

5.3.1 Proposed Framework

Figure 5.5 Security Framework

5.3.2 Use of Cataloger

Since the security has been built on the synchronous mode of job execution in

SORCER, Cataloger has been used. Cataloger is used by Jobber to get a proxy for the

Caller before sending the jobs to the caller.

66

5.3.3 Ensuring Security

The proposed framework ensures a trust-environment between the requestor and

SORCER providers. All the SORCER providers are to be started using secure endpoints

such as SSL, Kerberos etc. Following Security requirements have been built in SORCER:

• Authentication

• Authorization (and Delegation)

• Proxy Verification (Trusting the downloaded code)

• Integrity

• Auditing

• Security wrapper for executing legacy code on Caller

5.3.4 Security Wrapper for Service UI

A security wrapper for Service UI is needed so that just by subcalssing this

wrapper, any service UI inherits all the embedded security automatically. This will ensure

that each service provider will not have to think about writing security for its own Service

UI. This will help in less security patch-ups since the security will be provided by default.

This security wrapper should be able to perform the following:

• Authenticate user

• Verify proxy

• Set Integrity constraint (avoid man in the middle attack)

• Set Mutual Authentication constraint (to trust the service)

67

• Set Confidentiality constraint (to ensure privacy) etc.

The secure wrapper should be able to abort the communication in case the service

provider doesn’t satisfy these constraints. Also it shall be able to send this information

(failed attempt) to the Auditor so that it can log the information accordingly.

5.3.5 Security wrapper for Caller

The security wrapper for Caller is needed. Since the legacy code (or application)

may be in any language and Caller is supposed to execute system calls, if the executables

consist of virus code (changed by a third party), it may result in disaster for the grid

resources. So the caller shall make a system call only for those files (executables) whose

integrity it can trust. In other words, caller shall have a mechanism to check whether the

downloaded executable from the database has been changed by a third party or not.

5.3.6 Auditor

An Auditor is required to audit critical communications between requestors and

Service Providers. This is a passive means of ensuring security. In case, the system is

compromised, the audits can be checked for where and when the security breach actually

occurred. Regular checks of the logs will help in improving security and tracking the

fault as and when an attack on system security is performed.

5.3.7 Package Diagram

The package hierarchies and dependencies are shown as a UML diagram in the

Figure 5.6. Since Intrinsic Security Framework is intrinsic to the SORCER existing

68

framework, very few packages were actually added to the default SORCER packages.

The (top level) packages that are critical the SGrid framework are:

• jgapp.jaas

• sorcer.base

• sorcer.core

• sorcer.core.provider.jobber

• sorcer.core.provider.caller

• sorcer.core.provider.catalog

• sorcer.core.providor.auditor

• sorcer.core.security.ui

• sorcer.provider.grid.dispatcher

69

Figure 5.6 Package Diagram

5.3.8 Use Cases

The framework’s objectives have been classified as use cases. These use cases are

used to demonstrate the working of the security framework built upon current version of

SORCER [35].

Accessing Services

This use case (Figure 5.7) shows how the access controlled services are being

used in the framework. The numbered steps show the actions being performed in the

respective order.

70

Figure 5.7 Use Case: Accessing Services

Secure SGrid Providers

The Secure SGrid Providers (Figure 5.8) use case scenario shows the two way

security on the network. If the client requires security, but the service provider does not

support security constraints (for example TCPEndpoints) then the transaction is not

completed (action 4.2 in Figure 5.8).

Figure 5.8 Use Case: Secure S-Grid Providers

71

SGrid Authorization

Authorization is one of the objectives of the secure framework. In Figure 5.9 an

anonymous user logs in. This user doesn’t have the proper authorization to access the

remote method called on the service provider. Using the policy files we can define

method level authorization based on the type of user.

Figure 5.9 Use Case: SGrid Authorization – Access Denied

In the Figure 5.10 the user is Abhijit. This user is authorized to access the remote

method on the provider and hence the remote call is allowed to go forward (to Jobber).

72

Figure 5.10 Use Case: SGrid Authorization – Access Granted

Executing Legacy code

Executing legacy code is also important to provide a security wrapper for the

Caller since it executes system calls. The Caller first checks whether the obtained

executable file has the same hash value as is given in its records, if the file has not been

modified as per the information available to the caller, the execution is allowed (Figure

5.12) otherwise execution is failed (Figure 5.11).

Figure 5.11 Use Case: Executing Legacy Code – File Modified

Figure 5.12 shows the flow when the remote call is successful at the Caller. The

green arrow indicates that the result is finally being sent to the Requestor

73

Figure 5.12 Use Case: Executing Legacy Code – File not modified

All the above usecases when combined form the total functioning of SGrid. The

basic flow being:

• Login Service UI prompts the requestor to “log in”

• Only when the user is logged in, user is shown the Service UI pertaining to the

provider (GridDispatcherProvider in this case).

• After inputting the values in the Service UI, when user clicks on “run”, the values are

passed to the provider.

• The provider checks for the user authorization, creates the CallerContext and sends

the Job to the Jobber

• Jobber create jobs or tasks according to the strategy provided by the user and

dispatches the jobs to the Caller

• The Caller checks the integrity of the “executable” (legacy code) and then performs

the required execution and returns the result.

All the above use-cases can be represented by one class diagram as provided

below (Figure 5.13):

74

Figure 5.13 Class Diagram

Auditing

Auditing is enabled with the help of a provider called Auditor (Figure 5.14). The

service providers send the critical messages to the Auditor for it to log the messages. The

auditor can either log them into files or submit the messages to the database in predefined

format.

75

Figure 5.14 Use Case: Auditor

Proxy Verification

The Figure 5.15 shows the flow in which the proxy verification takes place in the

framework.

76

Figure 5.15 Proxy Verification

Figure 5.16 shows the physical configuration of how the resources were deployed

to show the working of the suggested framework.

77

Figure 5.16 Deployment Diagram

It is worth noticing that the various services have been started on different

platforms (OS). This shows the heterogeneous nature of the SGrid framework. Following

servers have been used to deploy the services:

• Neem (Linux)

• Emerald (Windows XP)

• Beryl (Windows XP)

• Yucca (Windows 2003)

• The requestor uses the IncaX [33] service Browser, to access the list of available

services on the network. Here, requestor computer (Yucca) has no prior setup of

SORCER framework which signifies the 0-Install feature of the SORCER framework.

A view of the IncaX browser has been given in Figure 5.17:

78

Figure 5.17 Incax Browser

5.4 Validation

The validation of the framework was done on the SGrid Framework. Following

snapshots show the working of the framework as required in the use cases:

5.4.1 User Authentication:

The Figure 5.18 shows the snapshot of a user logging in the network.

79

Figure 5.18 User Authentication

The log-in window show up even before the main Service UI window shows up.

This is because the Service UI extends SecureSorcerUI class which locks the

window unless the password is input.

5.4.2 Authorization:

In the Figure 5.19 snapshot of how remote call fails when a user who is not

allowed access to invoke a particular method on the provider, tries to invoke the method.

In this case “anonymous” who is not allowed to invoke “computePrime()” method

on the SGrid Dispatcher get a “remote called failed exception”.

80

Figure 5.19 Anonymous Log in – Authorization failed

The green circles show that the user “anonymous” has logged-in and he has

received a “Remote Call Failed” exception.

5.4.3 Caller – Integrity Check

The Figure 5.20 shows the snap shot of the result when the executable fails the

integrity check at the callers end. Caller responds with “File has been Modified”

Exception in the output window. Caller responds in such as way because in case the file

has been modified recently the caller doesn’t have the information of the file being

changed. According to its information the file has been changed and it will not execute

the file unless its information has been updated (by a trusted user) with the hash of the

new file.

81

Figure 5.20 Caller Integrity Check

Once the user receives this error message, he shall update the Caller information

about the file either by himself (if he has proper authority) or by communicating the

problem to an administrator.

5.4.4 Successful Communication

The Figure 5.21 show the snapshot of a successful communication in which case

an output window is popped-up which contains the results as obtained by the Caller.

82

Figure 5.21 Successful communication

The output window is marked with the green circle. The results are the standard

results from Proth.exe when the input is given as (12 ,3).

5.5 Future Work

5.5.1 Secure JavaSpaces

Since the prime objective of a JavaSpace is to be publicly available, the task of

making Java Space secure becomes substantially difficult. Also, the JavaSpace works

with “Pull” technology, meaning that it is just a store of Entries. The providers pull the

entries from the space and put into the space accordingly. JavaSpace doesn’t distribute

the jobs, and this makes it very difficult to control who puts and takes the jobs form the

space.

If the secure framework cannot control who is putting the jobs in the exertion

space and who is taking the job form it, the whole framework can easily be compromised.

83

Since securing exertion space is a big problem in itself it will be a very good topic

in extension to the proposed framework.

5.5.2 Cataloger Security

The cataloger also shall be made secure. There shall be provision where it

registers/provides proxies to only trusted providers. Otherwise there is always threat of

rogue services getting registered as trusted services on the network

The framework shall provide mutual trust environment so that services can trust

that they are not registering to a rogue cataloger. Also, the cataloger shall register only

trusted services and provide proxies to trusted services only.

5.5.3 Custom Server End Points for SORCER

The implementation consists of servers using SSL endpoints (Jini Default

SslServerEndpoint). The other choices were KerberosServerEndpoint,

HttpsServerEndpoint etc. However, these are default implementations provided

by Jini, are not very flexible. There may be a lot of other requirements to be able to work

in secure framework, these requirements call for creation of custom Server endpoints

which can enable secure communication in more flexible ways.

For example, SslServerEndpoint doesn’t support Delegation.YES

constraint because the Private credentials of the Subject cannot pass from the Subject to

the service provider, for security reasons. However, KerberosServerEndpoint

does support Delegation.YES constraint. Kerberos Endpoints however cannot

provide as good confidentiality as SSL Endpoints can (RSA Encryption).

84

Requiring both scenarios for a secure framework generally calls for additional

measures such as use of SPKI keys etc. A customized endpoint which inherits all the

capabilities provided by both of these endpoints will be a great addition to the security in

the framework.

5.5.4 Providing extra authentication capabilities

A useful extension to the proposed framework would be to introduce more secure

methods of user Authentication. Few of these methods care outlined below:

• Java Card

• Finger Prints

• Voice Recognition

• Retinal Scan etc.

This will also help in Authorization based on which method of authentication user

used to get authenticated. For example the user who got authenticated using “retinal

scan” (hence more trusted) will be given more privileges to the Grid as compared to the

user who got authenticated using Java Card (because the card has more probability of

getting compromised).

85

REFERENCES

[1] IBM Autonomic Computing Initiative, Retrieved from

http://www-306.ibm.com/autonomic/index.shtml

[2] I. Foster, and C.Kesselman, (eds.). The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 1999.

[3] Rajkumar B. High Performance Cluster Computing Volume 1. Prentice Hall,

1999.

[4] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software

infrastructure for the i-way high performance distributed computing experiment,

[5] In Proc. 5th IEEE Symposium on High Performance Distributed Computing,

pages 562_571, 1997

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An

open grid services architecture for distributed systems integration, 2002.

[7] Grimshaw, A.S. "Enterprise-Wide Computing." Science, 256: 892-894, Aug. 12,

1994.

[8] Sun cluster grid architecture whitepaper, 2002, Retrieved from

http://wwws.sun.com/software/grid/SunClusterGridArchitecture.pdf

[9] Larry J. Mitchell, Dennis Reddy. Fault Tolerant Dynamic Distributed

Computations & Grid Systems

[10] Rajkumar B. High Performance Cluster Computing Volume 1. Prentice Hall,

1999.

86

[11] Jan Newmarch’s Guide to Jini Technologies, Retrieved from

http://pandonia.canberra.edu.au/java/jini/tutorial/Jini.xml

[12] Soorianarayanan, S (2004-2005). Autonomic Provisioning in SORCER

Environment, Masters Thesis

[13] Zhao, S. & Sobolewski, M. (2001). “Context Model Sharing in the SORCER

Environment”

[14] Garms, J. and Somerfield, D. (2001). Professional Java Security, Wrox Press

Ltd., ISBN 1861004257

[15] Gorissen, D. H2O Metacomputing - Jini Lookup and Discovery (2003-2004),

Master's Thesis

[16] Jini 2.0 New API Jini Network Technology Specifications. Retrieved Febuarary

5, 2003 from www.sun.com/software/jini/specs

[17] Jini Starter Kit 2.0, Retrieved from http://www.javaworld.com/javaworld/jw-05-

2003/jw-0509-jiniology-p3.html

[18] Jini Technology Starter Kit Overview v2.01, Retrtieved from

http://java.sun.com/developer/products/jini/arch2_0.html

[19] Nathalie, F. William, L. Mayer, A. Newhouse, S. Darlington, J. (2002), ICENI:

An Open Grid Service Architecture Implemented with Jini, Retrieved from,

http://citeseer.nj.nec.com/furmento02iceni.html

[20] JavaTM Remote Method Invocation (RMI) [online] [cited 2002 March 22].

Available at URL: http://java.sun.com/products/jdk/rmi/

[21] Basic Services (Reggie, Mahalo, JavaSpaces), Retrieved from

http://www.cdegroot.com/articles/jini-newsletter/2000-13-basic-services-2/

[22] Reggie Reference, Retrieved from http://www.kedwards.com/jini/reggie.html

87

[23] Basic Services (Mercury, Norm, Fiddler), Retrieved from

http://www.cdegroot.com/articles/jini-newsletter/2000-14-basic-services-3/

[24] Edwards, W.K. (2000). Core Jini: 2nd ed., Prentice Hall, ISBN 0-13-089408-7

[25] Java 2 API, Retrieved from http://java.sun.com/j2se/1.4.2/docs/api/

[26] Jini by example- white paper. Retrieved Febuarary 5, 2003 from

http://www.cswl.com/whiteppr/tutorials/jini.html

[27] Röhl P. J., Kolonay, R.M., Irani, R.K., Sobolewski, M.,Kao, K. 2000. “A

Federated Intelligent Product Environment,AIAA-2000-4902, 8th AIAA

/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, Long Beach, CA, September 6-8.

[28] FIPER (Federated Intelligent Product Environment) [online] [cited 2002 March

22]. Retrieved Febuarary 5, 2003 from http://www.oai.org/pages/FIPER.html.

[29] Kolonay, R.M., Sobolewski, M. "Grid interactive service-oriented programming

environment", CE2004: The 11th ISPE International Conference on Concurrent

Engineering: Research and Applications Beijing Friendship Hotel - Beijing, P. R.

China 26 - 30 July, 2004

[30] Sobolewski, M. 2002. FIPER: The Federated S2S Environment, JavaOne, Sun’s

2002 Worldwide Java Developer Conference, San Francisco, 2002.

[31] Soorianarayanan, S and Sobolewski M. "Monitoring Federated Services in CE

Grids", CE2004: The 11th ISPE International Conference on Concurrent

Engineering: Research and Applications Beijing Friendship Hotel - Beijing, P. R.

China 26 - 30 July, 2004

[32] Jini Extensible Remote Invocation. Retrieved Febuarary 5, 2003 from

http://www.artima.com/intv/jeri.html

88

[33] Incax. Retrieved from http://www.incax.com/

[34] Michael Sobolewski, Sekhar Soorianarayanan and Ravi-Kiran Malladi-Venkata,

Service-Oriented File Sharing, Proceedings of the IASTED Intl., Conference on

Communications, Internet, and Information technology Nov 17-19, 2003,

Scottsdale, AZ.

[35] Arrington C. T, Rayhan S.H. Enterprise Java and UML, 2nd Edition, Wiley &

Sons, ISBN 0-47-126778-3

[36] Rich B. A. Java Authentication and Authorization services, Retrieved from

http://se2c.uni.lu/tiki/se2c-bib_download.php?id=470

[37] Java Glossary: Policy, Retrieved from

http://www.mindprod.com/jgloss/policyfile.html

[38] The Java Developers Almanac 1.4: Managing Policy Files, Retrieved from

http://javaalmanac.com/egs/java.security/UsePolicy.html

[39] Jurjens J. Secure Java Development with UML, Retrieved from

http://www4.in.tum.de/~juerjens/papers/inetsec01talk.pdf

89

APPENDIX A:

SGRID INTERFACES

Following is a List of Interfaces that are used in the Framework:

sorcer.base.Cataloger

public interface Cataloger extends Remote {

 public Provider lookup(Entry[] attributes) throws RemoteException;

 public Provider lookup(ServiceID serviceID) throws RemoteException;

 public HashMap getProviderMethods() throws RemoteException;

 public ServiceContext getContexts(String provider, String method) throws

RemoteException;

 public String getCatalogerServiceInfo() throws RemoteException;

}

sorcer.core.Jobber

public interface Jobber extends AdministratableProvider, Remote {

 public boolean isAuthorized(Subject subject, String serviceType, String

providerName)

 throws RemoteException;

}

sorcer.core.Caller

public interface Caller extends Remote {

 public ServiceContext execute(ProviderContext context) throws

RemoteException;

90

}

sorcer.core.Auditor

public interface Auditor extends Remote {

 public ServiceContext audit(ProviderContext context) throws

RemoteException;

}

sorcer.provider.grid.dispatcher.GridDispatcherRemote

public interface GridDispatcherRemote extends Remote {

 public ServiceContext computePrime(ServiceContext ctx) throws

RemoteException;

 public FileStorer getFileStorer() throws RemoteException;

}

91

APPENDIX B

CONFIGURATION FILES FOR SECURE SERVER

The configuration file is required to start a server with a Subject so that it can start

with proper SslEndpoints. The configuration file looks like the following:

sorcer.core.provider.ServiceProvider{

 private static users=

 KeyStores.getKeyStore("file:../config/truststore.server", null);

 private static clientUser =

 KeyStores.getX500Principal("client", users);

 serverExporter =

 new BasicJeriExporter(

 SslServerEndpoint.getInstance(0),

 new BasicILFactory(

 new BasicMethodConstraints(

 new InvocationConstraints(

 new InvocationConstraint[]{Integrity.YES},

 (InvocationConstraint []) null)),

 null

)

);

 loginContext = new LoginContext("GAppLogin");

92

}

Enabling SSL endpoints

The SSL endpoints are enabled with the help of BasicJeriExporter class:

new BasicJeriExporter(

 SslServerEndpoint.getInstance(0),

 new BasicILFactory(

 new BasicMethodConstraints(

 new InvocationConstraints(

 new InvocationConstraint[]{Integrity.YES},

 (InvocationConstraint []) null)),

 null

)

);

SslServerEndpoint.getInstance(0) enables server to start the SSL server at

any free port possible. With the help of BasicILFactory class, various constraints

(Integrity.YES) can be specified, so that the server looks for these constraints before

allowing any transaction.

Assigning a Subject

Subject is assigned with the help of JAAS framework again. The “loginContext”

is specified and this loginContext is then provided.

 loginContext = new LoginContext("GAppLogin");

93

The server then looks for “GappLogin” in the configuration file which is given as

the system property “java.security.auth.login.config” at the run time. This file’s

contents look like this:

GAppLogin {

 jgapp.jaas.PsswdLoginModule required;

};

GAppLogin {

 com.sun.security.auth.module.KeyStoreLoginModule required

 keyStoreAlias="mykey"

 keyStoreURL="file:../config/keystore.server"

 keyStorePasswordURL="file:../config/password.server";

};

94

APPENDIX C:

POLICY FILES

The policy file is very important part of starting a server with SSL and controlling

access based on Authorization [38] [37].

grant codebase "file:../lib/dispatcher.jar"{

 permission java.net.SocketPermission "*", "connect,accept,listen";

 permission javax.security.auth.PrivateCredentialPermission

"javax.security.auth.x500.X500PrivateCredential javax.security.auth.x500.X500Principal

\"*\"", "read";

 permission net.jini.security.AuthenticationPermission

"javax.security.auth.x500.X500Principal \"*\"", "accept";

 permission javax.security.auth.AuthPermission

"createLoginContext.GAppLogin";

 permission java.io.FilePermission "<<ALL FILES>>" ,

"read,write,execute";

 permission javax.security.auth.AuthPermission "doAsPrivileged";

 permission net.jini.discovery.DiscoveryPermission "sorcer.DEV";

 //permission sorcer.provider.dispatcher.MethodPermission "*";

 permission java.lang.RuntimePermission "getClassLoader";

 permission net.jini.io.context.ContextPermission

"net.jini.io.context.ClientSubject.getClientSubject";

};

95

grant principal javax.security.auth.x500.X500Principal "CN=abhijit, OU=a, O=a,

L=a, ST=a, C=a"{

 permission java.security.AllPermission;

};

grant principal javax.security.auth.x500.X500Principal "CN=Server, OU=IT,

O=Sorcer, L=Lubbock, ST=Tx, C=US"{

 permission java.net.SocketPermission "*", "connect,accept,listen";

 permission javax.security.auth.PrivateCredentialPermission

"javax.security.auth.x500.X500PrivateCredential javax.security.auth.x500.X500Principal

\"*\"", "read";

 permission javax.security.auth.AuthPermission "doAsPrivileged";

 permission javax.security.auth.AuthPermission "doAs";

 permission javax.security.auth.AuthPermission "getSubject";

 permission net.jini.discovery.DiscoveryPermission "sorcer.DEV";

 permission java.lang.RuntimePermission "getClassLoader";

 permission java.io.FilePermission "provider.properties", "read";

 permission java.io.FilePermission "provider.log", "read, write";

 permission java.io.FilePermission "<<ALL FILES>>" , "read";

 permission java.util.PropertyPermission "java.home", "read";

 permission java.util.PropertyPermission "sorcer.env.file", "read";

 permission java.util.PropertyPermission "sorcer.debug", "read";

96

 permission java.util.PropertyPermission "sorcer.home", "read";

 permission java.util.PropertyPermission "sorcer.rmi.host", "read";

 permission java.util.PropertyPermission "sorcer.rmi.port", "read";

 permission java.util.PropertyPermission "sorcer.http.host", "read";

 permission java.util.PropertyPermission "sorcer.http.port", "read";

 permission java.util.PropertyPermission "sorcer.portal.host", "read";

 permission java.util.PropertyPermission "sorcer.portal.port", "read";

 permission java.util.PropertyPermission "sorcer.lib.codebase", "read";

 permission java.util.PropertyPermission "user.dir", "read";

 permission java.util.PropertyPermission "user.name", "read";

 permission java.lang.RuntimePermission "getClassLoader";

 permission java.lang.RuntimePermission "setIO";

 permission sorcer.security.permission.MethodPermission "*";

};

Assigning policy to different Subjects

As given above, different set of policies have to be given for different codebase

and Subjects. The reason is if All permissions are given to the code base “dispatcher.jar”

(in this case, then the code will no longer look for separate permissions for different

Subjects. Hence very restrictive amount of permissions shall be given to the codebase. A

list of important (required) permissions to be given is provided below:

97

• java.net.SocketPermission javax.security.auth.PrivateCredentialPermission

• permission net.jini.security.AuthenticationPermission

• javax.security.auth.AuthPermission

• permission java.io.FilePermission

• permission net.jini.discovery.DiscoveryPermission

• permission java.lang.RuntimePermission

• permission net.jini.io.context.ContextPermission

Now, after allowing the above permissions to the codebase, each Subject shall be

provided with its own set of permission. In the case of above policy file (for example),

the “Client” subject has been allowed all permissions, however, the Server itself has been

restricted to certain permissions.

98

APPENDIX D

API SPECIFICATION

Package sorcer.provider.grid.dispatcher

Interface Summary

GridDispatcherRemote The interface for S Grid Dispatcher

Class Summary

GridDispatcherArgUI

This is the helper class

which renders the Argument

UI when the Arguments

button in the SGrid UI is

clicked

GridDispatcherAttribUI

This is the helper class

which renders the Argument

UI when the Arguments

button in the SGrid UI is

clicked

GridDispatcherContextUtil

Helper class for the

SGrid Dispatcher (UI and

Provider) to set and get Caller

99

Context

GridDispatcherCtxUI

This is the helper class

which renders the Operating

System UI when the

Arguments button in the

SGrid UI is clicked

GridDispatcherExecUI

Helper class to create

the UI for specyfying the

executables to be run

GridDispatcherProviderImpl
The impl class for s

Grid Dispatcher

GridDispatcherProviderImpl.Disco

The class which looks

up for jobber proxy from the

lookup service

GridDispatcherProviderImpl.DispatcherResult

Class which waits for

the return of the results from

Caller

GridDispatcherProviderImpl.JobDispatcher

GridDispatcherProviderImpl.JobsDispatcher

Class for dispatching

the job to the Jobber,

internally used by

100

JobDispatcher class

GridDispatcherUI
The Class which

renders the S Grid service UI

GridDispatcherUI.DispatcherListener
DispatcherListener

Class listens for the results

sorcer.provider.grid.dispatcher

Interface GridDispatcherRemote

All Superinterfaces:

java.rmi.Remote

All Known Implementing Classes:

GridDispatcherProviderImpl

public interface GridDispatcherRemote

extends java.rmi.Remote

The interface for S Grid Dispatcher

Author:

Abhijit Rai

101

Method Summary

 sorcer.base.ServiceContext computePrime(sorcer.base.ServiceContext ctx)

 This method dispatched the compute call to Caller.

 sorcer.core.FileStorer getFileStorer()

 Gets the proxy for filestore provider

Method Detail

computePrime

public sorcer.base.ServiceContext

computePrime(sorcer.base.ServiceContext ctx)

 throws

java.rmi.RemoteException

This method dispatched the compute call to Caller. It is named computePrime

because it was first developed for Sorcer Proth

Returns:

ServiceContext with the compute results included

Throws:

java.rmi.RemoteException

getFileStorer

public sorcer.core.FileStorer getFileStorer()

 throws

java.rmi.RemoteException

Gets the proxy for filestore provider

Returns:

102

the filestore provider

Throws:

java.rmi.RemoteException

103

sorcer.provider.grid.dispatcher

Class GridDispatcherArgUI

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

sorcer.provider.grid.dispatcher.GridDispatcherArgUI

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.event.ActionListener,

java.util.EventListener, java.awt.image.ImageObserver, java.awt.MenuContainer,

javax.swing.RootPaneContainer, java.io.Serializable, javax.swing.WindowConstants

public class GridDispatcherArgUI

extends javax.swing.JFrame

implements java.awt.event.ActionListener

This is the helper class which renders the Argument UI when the Arguments button in the SGrid
UI is clicked

Author:

Abhijit Rai

See Also:

Serialized Form

Nested Class Summary

104

Nested classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Nested classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Nested classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Nested classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

105

 javax.swing.JTextField addArgsTfld

 javax.swing.JTextField addInTfld

 javax.swing.JTextField addOutTfld

 javax.swing.JCheckBox argsChkBx

 javax.swing.JTextArea argsTarea

 javax.swing.JComboBox callPrvCbx

 javax.swing.JComboBox hostnameCbx

 javax.swing.JCheckBox inChkBx

 javax.swing.JTextArea inTarea

 javax.swing.JComboBox locationCbx

 javax.swing.JComboBox opSysCbx

106

 javax.swing.JCheckBox outChkBx

 javax.swing.JTextArea outTarea

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR,

ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ, MAXIMIZED_VERT, MOVE_CURSOR,

N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR,

S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,

W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,

RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

107

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

GridDispatcherArgUI()

 Prepares the UI by combining various components

Method Summary

 void actionPerformed(java.awt.event.ActionEvent ae)

 Called when an action occurs on the Argument UI

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext, getContentPane,

getDefaultCloseOperation, getGlassPane, getJMenuBar, getLayeredPane, getRootPane,

isDefaultLookAndFeelDecorated, isRootPaneCheckingEnabled, paramString, processWindowEvent,

remove, setContentPane, setDefaultCloseOperation, setDefaultLookAndFeelDecorated, setGlassPane,

setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

108

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getExtendedState, getFrames, getIconImage,

getMaximizedBounds, getMenuBar, getState, getTitle, isResizable, isUndecorated, remove, removeNotify,

setCursor, setExtendedState, setIconImage, setMaximizedBounds, setMenuBar, setResizable, setState,

setTitle, setUndecorated

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener, addWindowFocusListener,

addWindowListener, addWindowStateListener, applyResourceBundle, applyResourceBundle,

createBufferStrategy, createBufferStrategy, dispose, getBufferStrategy, getFocusableWindowState,

getFocusCycleRootAncestor, getFocusOwner, getFocusTraversalKeys, getGraphicsConfiguration,

getInputContext, getListeners, getLocale, getMostRecentFocusOwner, getOwnedWindows, getOwner,

getToolkit, getWarningString, getWindowFocusListeners, getWindowListeners, getWindowStateListeners,

hide, isActive, isFocusableWindow, isFocusCycleRoot, isFocused, isShowing, pack, postEvent,

processEvent, processWindowFocusEvent, processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, setCursor, setFocusableWindowState,

setFocusCycleRoot, setLocationRelativeTo, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, applyComponentOrientation,

areFocusTraversalKeysSet, countComponents, deliverEvent, doLayout, findComponentAt,

findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getContainerListeners, getFocusTraversalPolicy, getInsets,

109

getLayout, getMaximumSize, getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,

isFocusCycleRoot, isFocusTraversalPolicySet, layout, list, list, locate, minimumSize, paint,

paintComponents, preferredSize, print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setFocusTraversalKeys, setFocusTraversalPolicy, setFont,

transferFocusBackward, transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage, coalesceEvents,

contains, contains, createImage, createImage, createVolatileImage, createVolatileImage, disable,

disableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods, firePropertyChange,

firePropertyChange, firePropertyChange, getBackground, getBounds, getBounds, getColorModel,

getComponentListeners, getComponentOrientation, getCursor, getDropTarget, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground, getGraphics, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocation, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMouseWheelListeners, getName, getParent, getPeer,

getPropertyChangeListeners, getPropertyChangeListeners, getSize, getSize, getTreeLock, getWidth, getX,

getY, gotFocus, handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner, isFocusTraversable, isFontSet,

isForegroundSet, isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,

lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus,

paintAll, prepareImage, prepareImage, printAll, processComponentEvent, processFocusEvent,

processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, processKeyEvent,

110

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent, removeComponentListener,

removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener,

removeInputMethodListener, removeKeyListener, removeMouseListener, removeMouseMotionListener,

removeMouseWheelListener, removePropertyChangeListener, removePropertyChangeListener, repaint,

repaint, repaint, repaint, requestFocus, requestFocus, requestFocusInWindow, requestFocusInWindow,

reshape, resize, resize, setBackground, setBounds, setBounds, setComponentOrientation, setDropTarget,

setEnabled, setFocusable, setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

setLocation, setLocation, setName, setSize, setSize, setVisible, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Field Detail

addArgsTfld

public javax.swing.JTextField addArgsTfld

111

addInTfld

public javax.swing.JTextField addInTfld

addOutTfld

public javax.swing.JTextField addOutTfld

locationCbx

public javax.swing.JComboBox locationCbx

hostnameCbx

public javax.swing.JComboBox hostnameCbx

opSysCbx

public javax.swing.JComboBox opSysCbx

callPrvCbx

public javax.swing.JComboBox callPrvCbx

argsTarea

public javax.swing.JTextArea argsTarea

112

inTarea

public javax.swing.JTextArea inTarea

outTarea

public javax.swing.JTextArea outTarea

argsChkBx

public javax.swing.JCheckBox argsChkBx

inChkBx

public javax.swing.JCheckBox inChkBx

outChkBx

public javax.swing.JCheckBox outChkBx

Constructor Detail

GridDispatcherArgUI

public GridDispatcherArgUI()

Prepares the UI by combining various components

Method Detail

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent ae)

Called when an action occurs on the Argument UI

113

Specified by:

actionPerformed in interface java.awt.event.ActionListener

Parameters:

ae - The event which was caused by the action

114

sorcer.provider.grid.dispatcher

Class GridDispatcherAttribUI

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

sorcer.provider.grid.dispatcher.GridDispatcherAttribUI

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.event.ActionListener,

java.util.EventListener, java.awt.image.ImageObserver, java.awt.MenuContainer,

javax.swing.RootPaneContainer, java.io.Serializable, javax.swing.WindowConstants

public class GridDispatcherAttribUI

extends javax.swing.JFrame

implements java.awt.event.ActionListener

This is the helper class which renders the Argument UI when the Arguments button in the SGrid
UI is clicked

Author:

Abhijit Rai

See Also:

Serialized Form

Nested Class Summary

115

Nested classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Nested classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Nested classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Nested classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

116

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR,

ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ, MAXIMIZED_VERT, MOVE_CURSOR,

N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR,

S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,

W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,

RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

117

Constructor Summary

GridDispatcherAttribUI()

 Prepares the UI by combining various components

Method Summary

 void actionPerformed(java.awt.event.ActionEvent ae)

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext, getContentPane,

getDefaultCloseOperation, getGlassPane, getJMenuBar, getLayeredPane, getRootPane,

isDefaultLookAndFeelDecorated, isRootPaneCheckingEnabled, paramString, processWindowEvent,

remove, setContentPane, setDefaultCloseOperation, setDefaultLookAndFeelDecorated, setGlassPane,

setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getExtendedState, getFrames, getIconImage,

getMaximizedBounds, getMenuBar, getState, getTitle, isResizable, isUndecorated, remove, removeNotify,

setCursor, setExtendedState, setIconImage, setMaximizedBounds, setMenuBar, setResizable, setState,

setTitle, setUndecorated

118

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener, addWindowFocusListener,

addWindowListener, addWindowStateListener, applyResourceBundle, applyResourceBundle,

createBufferStrategy, createBufferStrategy, dispose, getBufferStrategy, getFocusableWindowState,

getFocusCycleRootAncestor, getFocusOwner, getFocusTraversalKeys, getGraphicsConfiguration,

getInputContext, getListeners, getLocale, getMostRecentFocusOwner, getOwnedWindows, getOwner,

getToolkit, getWarningString, getWindowFocusListeners, getWindowListeners, getWindowStateListeners,

hide, isActive, isFocusableWindow, isFocusCycleRoot, isFocused, isShowing, pack, postEvent,

processEvent, processWindowFocusEvent, processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, setCursor, setFocusableWindowState,

setFocusCycleRoot, setLocationRelativeTo, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, applyComponentOrientation,

areFocusTraversalKeysSet, countComponents, deliverEvent, doLayout, findComponentAt,

findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getContainerListeners, getFocusTraversalPolicy, getInsets,

getLayout, getMaximumSize, getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,

isFocusCycleRoot, isFocusTraversalPolicySet, layout, list, list, locate, minimumSize, paint,

paintComponents, preferredSize, print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setFocusTraversalKeys, setFocusTraversalPolicy, setFont,

transferFocusBackward, transferFocusDownCycle, validate, validateTree

119

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage, coalesceEvents,

contains, contains, createImage, createImage, createVolatileImage, createVolatileImage, disable,

disableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods, firePropertyChange,

firePropertyChange, firePropertyChange, getBackground, getBounds, getBounds, getColorModel,

getComponentListeners, getComponentOrientation, getCursor, getDropTarget, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground, getGraphics, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocation, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMouseWheelListeners, getName, getParent, getPeer,

getPropertyChangeListeners, getPropertyChangeListeners, getSize, getSize, getTreeLock, getWidth, getX,

getY, gotFocus, handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner, isFocusTraversable, isFontSet,

isForegroundSet, isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,

lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus,

paintAll, prepareImage, prepareImage, printAll, processComponentEvent, processFocusEvent,

processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, processKeyEvent,

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent, removeComponentListener,

removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener,

removeInputMethodListener, removeKeyListener, removeMouseListener, removeMouseMotionListener,

removeMouseWheelListener, removePropertyChangeListener, removePropertyChangeListener, repaint,

repaint, repaint, repaint, requestFocus, requestFocus, requestFocusInWindow, requestFocusInWindow,

reshape, resize, resize, setBackground, setBounds, setBounds, setComponentOrientation, setDropTarget,

setEnabled, setFocusable, setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

120

setLocation, setLocation, setName, setSize, setSize, setVisible, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Constructor Detail

GridDispatcherAttribUI

public GridDispatcherAttribUI()

Prepares the UI by combining various components

Method Detail

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent ae)

Specified by:

actionPerformed in interface java.awt.event.ActionListener

121

sorcer.provider.grid.dispatcher

Class GridDispatcherContextUtil

java.lang.Object

 sorcer.provider.grid.dispatcher.GridDispatcherContextUtil

public class GridDispatcherContextUtil

extends java.lang.Object

Helper class for the SGrid Dispatcher (UI and Provider) to set and get Caller Context

Constructor Summary

GridDispatcherContextUtil()

Method Summary

static net.jini.core.event.RemoteEventListener getCallback(sorcer.base.ServiceContext ctx)

static java.lang.String getException(sorcer.base.ServiceContext ctx)

static java.lang.String getInputFile(sorcer.base.ServiceContext ctx)

static java.lang.String[] getInputValues(sorcer.base.ServiceContext ctx)

122

static int getJobSize(sorcer.base.ServiceContext ctx)

static java.lang.String getNotify(sorcer.base.ServiceContext ctx)

static java.lang.String getOutputFile(sorcer.base.ServiceContext ctx)

static void setCallback(sorcer.base.ServiceContext ctx,

net.jini.core.event.RemoteEventListener rel)

 sets callback path for the Caller Context

static void setException(sorcer.base.ServiceContext ctx,

java.lang.String values)

 sets jobsize for the Caller Context

static void setInputFile(sorcer.base.ServiceContext ctx,

java.lang.String file)

 sets input file path path for the Caller

Context

static void setInputValues(sorcer.base.ServiceContext ctx,

java.lang.String[] values)

 sets input values for the Caller Context

static void setJobSize(sorcer.base.ServiceContext ctx,

java.lang.String size)

123

 sets jobsize for the Caller Context

static void setNotify(sorcer.base.ServiceContext ctx,

java.lang.String notify)

 sets notify path for the Caller Context

static void setOutputFile(sorcer.base.ServiceContext ctx,

java.lang.String file)

 sets the output file path for the Caller

Context

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

GridDispatcherContextUtil

public GridDispatcherContextUtil()

Method Detail

getOutputFile

public static java.lang.String

getOutputFile(sorcer.base.ServiceContext ctx)

Parameters:

ctx - Caller Context

Returns:

124

returns the output file path as a String (extracts from the Caller Context)

setOutputFile

public static void setOutputFile(sorcer.base.ServiceContext ctx,

 java.lang.String file)

sets the output file path for the Caller Context

Parameters:

ctx - Caller Context

getCallback

public static net.jini.core.event.RemoteEventListener

getCallback(sorcer.base.ServiceContext ctx)

Parameters:

ctx - Caller Context

Returns:

returns callback path

setCallback

public static void setCallback(sorcer.base.ServiceContext ctx,

net.jini.core.event.RemoteEventListener rel)

sets callback path for the Caller Context

Parameters:

ctx - Caller Context

rel - Remote evvent listener for the call back handler

125

getNotify

public static java.lang.String

getNotify(sorcer.base.ServiceContext ctx)

Parameters:

ctx - Caller Context

Returns:

returns notify path as a String (extracts from the Caller Context)

setNotify

public static void setNotify(sorcer.base.ServiceContext ctx,

 java.lang.String notify)

sets notify path for the Caller Context

Parameters:

ctx - Caller Context

notify -

getInputFile

public static java.lang.String

getInputFile(sorcer.base.ServiceContext ctx)

Parameters:

ctx - Caller Context

Returns:

returns input file path as a String (extracts from the Caller Context)

126

setInputFile

public static void setInputFile(sorcer.base.ServiceContext ctx,

 java.lang.String file)

sets input file path path for the Caller Context

Parameters:

ctx - Caller Context

file - filename

getInputValues

public static java.lang.String[]

getInputValues(sorcer.base.ServiceContext ctx)

Parameters:

ctx - Caller Context

Returns:

returns input values as an array String (extracts from the Caller Context)

setInputValues

public static void setInputValues(sorcer.base.ServiceContext ctx,

 java.lang.String[] values)

sets input values for the Caller Context

Parameters:

ctx - Caller Context

values - array of input values

127

getJobSize

public static int getJobSize(sorcer.base.ServiceContext ctx)

Parameters:

ctx - Caller Context

Returns:

returns the jobsize set in the Caller Context

setJobSize

public static void setJobSize(sorcer.base.ServiceContext ctx,

 java.lang.String size)

sets jobsize for the Caller Context

Parameters:

ctx - Caller Context

size - size of the job

getException

public static java.lang.String

getException(sorcer.base.ServiceContext ctx)

Parameters:

ctx - Caller Context

Returns:

returns exception received in the Caller Context

128

setException

public static void setException(sorcer.base.ServiceContext ctx,

 java.lang.String values)

sets jobsize for the Caller Context

Parameters:

ctx - Caller Context

values -

129

sorcer.provider.grid.dispatcher

Class GridDispatcherCtxUI

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

sorcer.provider.grid.dispatcher.GridDispatcherCtxUI

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.event.ActionListener,

java.util.EventListener, java.awt.image.ImageObserver, java.awt.MenuContainer,

javax.swing.RootPaneContainer, java.io.Serializable, javax.swing.WindowConstants

public class GridDispatcherCtxUI

extends javax.swing.JFrame

implements java.awt.event.ActionListener

This is the helper class which renders the Operating System UI when the Arguments button in the
SGrid UI is clicked

Author:

Abhijit Rai

See Also:

Serialized Form

Nested Class Summary

130

Nested classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Nested classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Nested classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Nested classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

131

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR,

ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ, MAXIMIZED_VERT, MOVE_CURSOR,

N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR,

S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,

W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,

RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

132

Constructor Summary

GridDispatcherCtxUI()

 Prepares the UI by combining various components

Method Summary

 void actionPerformed(java.awt.event.ActionEvent ae)

 Called when an action occurs on the Argument UI

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext, getContentPane,

getDefaultCloseOperation, getGlassPane, getJMenuBar, getLayeredPane, getRootPane,

isDefaultLookAndFeelDecorated, isRootPaneCheckingEnabled, paramString, processWindowEvent,

remove, setContentPane, setDefaultCloseOperation, setDefaultLookAndFeelDecorated, setGlassPane,

setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getExtendedState, getFrames, getIconImage,

getMaximizedBounds, getMenuBar, getState, getTitle, isResizable, isUndecorated, remove, removeNotify,

setCursor, setExtendedState, setIconImage, setMaximizedBounds, setMenuBar, setResizable, setState,

setTitle, setUndecorated

133

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener, addWindowFocusListener,

addWindowListener, addWindowStateListener, applyResourceBundle, applyResourceBundle,

createBufferStrategy, createBufferStrategy, dispose, getBufferStrategy, getFocusableWindowState,

getFocusCycleRootAncestor, getFocusOwner, getFocusTraversalKeys, getGraphicsConfiguration,

getInputContext, getListeners, getLocale, getMostRecentFocusOwner, getOwnedWindows, getOwner,

getToolkit, getWarningString, getWindowFocusListeners, getWindowListeners, getWindowStateListeners,

hide, isActive, isFocusableWindow, isFocusCycleRoot, isFocused, isShowing, pack, postEvent,

processEvent, processWindowFocusEvent, processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, setCursor, setFocusableWindowState,

setFocusCycleRoot, setLocationRelativeTo, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, applyComponentOrientation,

areFocusTraversalKeysSet, countComponents, deliverEvent, doLayout, findComponentAt,

findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getContainerListeners, getFocusTraversalPolicy, getInsets,

getLayout, getMaximumSize, getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,

isFocusCycleRoot, isFocusTraversalPolicySet, layout, list, list, locate, minimumSize, paint,

paintComponents, preferredSize, print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setFocusTraversalKeys, setFocusTraversalPolicy, setFont,

transferFocusBackward, transferFocusDownCycle, validate, validateTree

134

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage, coalesceEvents,

contains, contains, createImage, createImage, createVolatileImage, createVolatileImage, disable,

disableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods, firePropertyChange,

firePropertyChange, firePropertyChange, getBackground, getBounds, getBounds, getColorModel,

getComponentListeners, getComponentOrientation, getCursor, getDropTarget, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground, getGraphics, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocation, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMouseWheelListeners, getName, getParent, getPeer,

getPropertyChangeListeners, getPropertyChangeListeners, getSize, getSize, getTreeLock, getWidth, getX,

getY, gotFocus, handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner, isFocusTraversable, isFontSet,

isForegroundSet, isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,

lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus,

paintAll, prepareImage, prepareImage, printAll, processComponentEvent, processFocusEvent,

processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, processKeyEvent,

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent, removeComponentListener,

removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener,

removeInputMethodListener, removeKeyListener, removeMouseListener, removeMouseMotionListener,

removeMouseWheelListener, removePropertyChangeListener, removePropertyChangeListener, repaint,

repaint, repaint, repaint, requestFocus, requestFocus, requestFocusInWindow, requestFocusInWindow,

reshape, resize, resize, setBackground, setBounds, setBounds, setComponentOrientation, setDropTarget,

setEnabled, setFocusable, setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

135

setLocation, setLocation, setName, setSize, setSize, setVisible, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Constructor Detail

GridDispatcherCtxUI

public GridDispatcherCtxUI()

Prepares the UI by combining various components

Method Detail

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent ae)

Called when an action occurs on the Argument UI

Specified by:

actionPerformed in interface java.awt.event.ActionListener

Parameters:

136

ae - The event which was caused by the action

137

sorcer.provider.grid.dispatcher

Class GridDispatcherExecUI

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

sorcer.provider.grid.dispatcher.GridDispatcherExecUI

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.event.ActionListener,

java.util.EventListener, java.awt.image.ImageObserver, java.awt.MenuContainer,

javax.swing.RootPaneContainer, java.io.Serializable, javax.swing.WindowConstants

public class GridDispatcherExecUI

extends javax.swing.JFrame

implements java.awt.event.ActionListener

Helper class to create the UI for specyfying the executables to be run

Author:

Abhijit Rai

See Also:

Serialized Form

Nested Class Summary

138

Nested classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Nested classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Nested classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Nested classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

139

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR,

ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ, MAXIMIZED_VERT, MOVE_CURSOR,

N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR,

S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,

W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,

RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

140

Constructor Summary

GridDispatcherExecUI()

 Prepares the UI by combining various components

Method Summary

 void actionPerformed(java.awt.event.ActionEvent ae)

 Called when an action occurs on the Argument UI

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext, getContentPane,

getDefaultCloseOperation, getGlassPane, getJMenuBar, getLayeredPane, getRootPane,

isDefaultLookAndFeelDecorated, isRootPaneCheckingEnabled, paramString, processWindowEvent,

remove, setContentPane, setDefaultCloseOperation, setDefaultLookAndFeelDecorated, setGlassPane,

setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getExtendedState, getFrames, getIconImage,

getMaximizedBounds, getMenuBar, getState, getTitle, isResizable, isUndecorated, remove, removeNotify,

setCursor, setExtendedState, setIconImage, setMaximizedBounds, setMenuBar, setResizable, setState,

setTitle, setUndecorated

141

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener, addWindowFocusListener,

addWindowListener, addWindowStateListener, applyResourceBundle, applyResourceBundle,

createBufferStrategy, createBufferStrategy, dispose, getBufferStrategy, getFocusableWindowState,

getFocusCycleRootAncestor, getFocusOwner, getFocusTraversalKeys, getGraphicsConfiguration,

getInputContext, getListeners, getLocale, getMostRecentFocusOwner, getOwnedWindows, getOwner,

getToolkit, getWarningString, getWindowFocusListeners, getWindowListeners, getWindowStateListeners,

hide, isActive, isFocusableWindow, isFocusCycleRoot, isFocused, isShowing, pack, postEvent,

processEvent, processWindowFocusEvent, processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, setCursor, setFocusableWindowState,

setFocusCycleRoot, setLocationRelativeTo, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, applyComponentOrientation,

areFocusTraversalKeysSet, countComponents, deliverEvent, doLayout, findComponentAt,

findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getContainerListeners, getFocusTraversalPolicy, getInsets,

getLayout, getMaximumSize, getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,

isFocusCycleRoot, isFocusTraversalPolicySet, layout, list, list, locate, minimumSize, paint,

paintComponents, preferredSize, print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setFocusTraversalKeys, setFocusTraversalPolicy, setFont,

transferFocusBackward, transferFocusDownCycle, validate, validateTree

142

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage, coalesceEvents,

contains, contains, createImage, createImage, createVolatileImage, createVolatileImage, disable,

disableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods, firePropertyChange,

firePropertyChange, firePropertyChange, getBackground, getBounds, getBounds, getColorModel,

getComponentListeners, getComponentOrientation, getCursor, getDropTarget, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground, getGraphics, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocation, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMouseWheelListeners, getName, getParent, getPeer,

getPropertyChangeListeners, getPropertyChangeListeners, getSize, getSize, getTreeLock, getWidth, getX,

getY, gotFocus, handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner, isFocusTraversable, isFontSet,

isForegroundSet, isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,

lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus,

paintAll, prepareImage, prepareImage, printAll, processComponentEvent, processFocusEvent,

processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, processKeyEvent,

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent, removeComponentListener,

removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener,

removeInputMethodListener, removeKeyListener, removeMouseListener, removeMouseMotionListener,

removeMouseWheelListener, removePropertyChangeListener, removePropertyChangeListener, repaint,

repaint, repaint, repaint, requestFocus, requestFocus, requestFocusInWindow, requestFocusInWindow,

reshape, resize, resize, setBackground, setBounds, setBounds, setComponentOrientation, setDropTarget,

setEnabled, setFocusable, setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

143

setLocation, setLocation, setName, setSize, setSize, setVisible, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Constructor Detail

GridDispatcherExecUI

public GridDispatcherExecUI()

Prepares the UI by combining various components

Method Detail

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent ae)

Called when an action occurs on the Argument UI

Specified by:

actionPerformed in interface java.awt.event.ActionListener

Parameters:

144

ae - The event which was caused by the action

145

sorcer.provider.grid.dispatcher

Class GridDispatcherProviderImpl

java.lang.Object

 sorcer.core.provider.ServiceProvider

 sorcer.core.provider.SorcerProvider

sorcer.provider.grid.dispatcher.GridDispatcherProviderImpl

All Implemented Interfaces:

net.jini.admin.Administrable, sorcer.core.AdministratableProvider,

com.sun.jini.admin.DestroyAdmin, java.util.EventListener, GridDispatcherRemote,

net.jini.admin.JoinAdmin, sorcer.base.MonitorableServicer, sorcer.base.Provider,

net.jini.export.ProxyAccessor, java.rmi.Remote,

net.jini.core.constraint.RemoteMethodControl, java.io.Serializable,

net.jini.security.proxytrust.ServerProxyTrust, net.jini.lookup.ServiceIDListener,

sorcer.base.Servicer, sorcer.util.SORCER

public class GridDispatcherProviderImpl

extends sorcer.core.provider.SorcerProvider

implements GridDispatcherRemote, sorcer.util.SORCER

The impl class for s Grid Dispatcher

See Also:

Serialized Form

Nested Class Summary

146

static class GridDispatcherProviderImpl.Disco

 The class which looks up for jobber proxy from the lookup

service

static class GridDispatcherProviderImpl.DispatcherResult

 Class which waits for the return of the results from Caller

static class GridDispatcherProviderImpl.JobDispatcher

static class GridDispatcherProviderImpl.JobsDispatcher

 Class for dispatching the job to the Jobber, internally used by

JobDispatcher class

Nested classes inherited from class sorcer.core.provider.SorcerProvider

sorcer.core.provider.SorcerProvider.KeepAwake

Field Summary

Fields inherited from class sorcer.core.provider.ServiceProvider

delegate

147

Fields inherited from interface sorcer.util.SORCER

ADD_DATANODE, ADD_DOMAIN, ADD_JOB_TO_SESSION, ADD_LEAFNODE,

ADD_SUBDOMAIN, ADD_TASK, ADD_TASK_TO_JOB_SAVEAS,

ADD_TASK_TO_JOB_SAVEAS_RUNTIME, APPEND, AS_PROPS, AS_SESSION,

ATTRIBUTE_MODIFIED, BGCOLOR, BROKEN_LINK, CATALOG_CONTENT,

CATALOGER_EVENT, CLEANUP_SESSION, CMPS, Command,

CONTEXT_ATTRIBUTE_VALUES, CONTEXT_ATTRIBUTES, CONTEXT_RESULT, CPS,

CREATION_TIME, DATANODE_FLAG, DELETE_CONTEXT_EVT, DELETE_JOB_EVT,

DELETE_NOTIFICATIONS, DELETE_SESSION, DELETE_TASK, DELETE_TASK_EVT,

DROP_EXERTION, EXCEPTION_IND, EXCEPTIONS, EXERTION_PROVIDER, FALSE, GET,

GET_CONTEXT, GET_CONTEXT_NAMES, GET_FT, GET_JOB, GET_JOB_NAME_BY_JOB_ID,

GET_JOBDOMAIN, GET_JOBNAMES, GET_NEW_SERVLET_MESSAGES,

GET_NOTIFICATIONS_FOR_SESSION, GET_RUNTIME_JOB, GET_RUNTIME_JOBNAMES,

GET_SESSIONS_FOR_USER, GET_TASK, GET_TASK_NAME_BY_TASK_ID,

GET_TASK_NAMES, GETALL_DOMAIN_SUB, IN_FILE, IN_PATH, IN_SCRIPT, IN_VALUE, IND,

IS_NEW, JOB_ID, JOB_NAME, JOB_STATE, JOB_TASK, MAIL_SEP, MAX_LOOKUP_WAIT,

MAX_PRIORITY, META_MODIFIED, MIN_PRIORITY, MODIFY_LEAFNODE, MSG_CONTENT,

MSG_ID, MSG_SOURCE, MSG_TYPE, NEW_CONTEXT_EVT, NEW_JOB_EVT, NEW_TASK_EVT,

NONE, NORMAL_PRIORITY, NOTIFY_EXCEPTION, NOTIFY_FAILURE,

NOTIFY_INFORMATION, NOTIFY_WARNING, NOTRUNTIME, NULL, OBJECT_DOMAIN,

OBJECT_NAME, OBJECT_OWNER, OBJECT_SCOPE, OBJECT_SUBDOMAIN, Order,

OUT_COMMENT, OUT_FILE, OUT_PATH, OUT_SCRIPT, OUT_VALUE, PERSIST_CONTEXT,

PERSIST_JOB, PERSIST_SORCER_NAME, PERSIST_SORCER_TYPES, PERSISTENCE_EVENT,

POSTPROCESS, PREPROCESS, PRIVATE, PRIVATE_SCOPE, PROCESS, PROVIDER,

PROVIDER_CONTEXT, PUBLIC_SCOPE, REGISTER_FOR_NOTIFICATIONS,

REMOVE_CONTEXT, REMOVE_DATANODE, REMOVE_JOB, REMOVE_TASK,

148

RENAME_CONTEXT, RENAME_SORCER_NAME, RESUME_JOB, RUNTIME, SAPPEND,

SAVE_TASK_AS, SAVEJOB_AS, SAVEJOB_AS_RUNTIME, SCRATCH_CONTEXTIDS,

SCRATCH_JOBEXERTIONIDS, SCRATCH_METHODIDS, SCRATCH_TASKEXERTIONIDS, Script,

SCRIPT, SELECT, SELF, SERVICE_EXERTION, SOC_BOOLEAN, SOC_CONTEXT_LINK,

SOC_DATANODE, SOC_DB_OBJECT, SOC_DOUBLE, SOC_FLOAT, SOC_INTEGER, SOC_LONG,

SOC_PRIMITIVE, SOC_SERIALIZABLE, SOC_STRING, SORCER_FOOTER, SORCER_HEADER,

SORCER_HOME, SORCER_INTRO, SORCER_TMP_DIR, SPOSTPROCESS, SPREPROCESS,

SPROCESS, STEP_JOB, STOP_JOB, STOP_TASK, SUBCONTEXT_CONTROL_CONTEXT_STR,

SUSPEND_JOB, SYSTEM_SCOPE, TABLE_NAME, TASK_COMMAND, TASK_ID, TASK_JOB,

TASK_NAME, TASK_PROVIDER, TASK_SCRIPT, TRUE, UPDATE_CONTEXT,

UPDATE_CONTEXT_EVT, UPDATE_DATANODE, UPDATE_EXERTION, UPDATE_JOB,

UPDATE_JOB_EVT, UPDATE_TASK, UPDATE_TASK_EVT

Constructor Summary

GridDispatcherProviderImpl()

 Constructor for the dispatcher

GridDispatcherProviderImpl(java.lang.String[] args, com.sun.jini.start.LifeCycle lifeCycle)

 Constructor for the dispatcher

Method Summary

 sorcer.base.ServiceContext computePrime(sorcer.core.ProviderContext dispatcherCtx)

 method to be invoked by SGrid Dispatcher UI

149

 sorcer.base.ServiceContext computePrime(sorcer.base.ServiceContext dispatcherCtx)

 this method is called internally

 sorcer.core.FileStorer getFileStorer()

 Method finds the filestore provider

 net.jini.lookup.entry.UIDescriptor getMainUIDescriptor()

 Create s UI descriptor to publish the UI

 void init()

 Calls the init method of the superclass

 boolean isValidTask()

 void setPrincipal(sorcer.base.Exertion ex,

java.security.Principal p)

 sets the principal for the exertion

 void setPrincipal(sorcer.base.Exertion ex,

javax.security.auth.Subject subj)

 sets the principal for the exertion

 void setPrincipal(sorcer.base.ServiceContext ctx,

java.security.Principal p)

 sets the principal for the context

Methods inherited from class sorcer.core.provider.SorcerProvider

addLookupAttributes, addLookupGroups, addLookupLocators, destroy, getAdmin, getConstraints,

150

getGrants, getLookupAttributes, getLookupGroups, getLookupLocators, getProxy, getProxyVerifier,

getServiceProxy, grant, grantSupported, init, modifyLookupAttributes, removeLookupGroups,

removeLookupLocators, setConstraints, setLookupGroups, setLookupLocators, toString

Methods inherited from class sorcer.core.provider.ServiceProvider

doJob, doTask, dropJob, dropTask, fireEvent, getAttributes, getDelegate, getDescription,

getGroups, getInfo, getLeastSignificantBits, getMethodContexts, getMostSignificantBits, getProperties,

getProperty, getProviderID, getProviderName, getScratchDirectory, getScratchURL, hangup, init,

invokeMethod, invokeMethod, isActive, isValidMethod, isValidTask, loadConfiguration, notifyException,

notifyException, notifyExceptionWithStackTrace, notifyFailure, notifyFailure, notifyInformation,

notifyWarning, processJob, quit, removeScratchDirectory, restore, resume, service, service0,

serviceIDNotify, setProperties, startTiming, step, stop, stopTiming, suspend, update

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface sorcer.base.Provider

fireEvent, getAttributes, getDescription, getGroups, getInfo, getMethodContexts, getProperties,

getProperty, getProviderID, getProviderName, hangup, init, invokeMethod, invokeMethod, isValidMethod,

isValidTask, notifyException, notifyException, notifyExceptionWithStackTrace, notifyFailure,

notifyFailure, notifyInformation, notifyWarning, restore, setProperties, startTiming, stopTiming, update

151

Methods inherited from interface sorcer.base.MonitorableServicer

resume, step, stop, suspend

Methods inherited from interface sorcer.base.Servicer

service

Constructor Detail

GridDispatcherProviderImpl

public GridDispatcherProviderImpl()

 throws java.rmi.RemoteException

Constructor for the dispatcher

GridDispatcherProviderImpl

public GridDispatcherProviderImpl(java.lang.String[] args,

com.sun.jini.start.LifeCycle lifeCycle)

 throws java.lang.Exception

Constructor for the dispatcher

Parameters:

args - Arguments to be supplied

Method Detail

setPrincipal

public void setPrincipal(sorcer.base.Exertion ex,

152

 javax.security.auth.Subject subj)

sets the principal for the exertion

Parameters:

ex - exertion to be dispatched

subj - subject from which principal is to be set

setPrincipal

public void setPrincipal(sorcer.base.Exertion ex,

 java.security.Principal p)

sets the principal for the exertion

Parameters:

ex - exertion to be dispatched

setPrincipal

public void setPrincipal(sorcer.base.ServiceContext ctx,

 java.security.Principal p)

sets the principal for the context

Parameters:

ctx - context to be dispatched

getFileStorer

public sorcer.core.FileStorer getFileStorer()

 throws

java.rmi.RemoteException

Method finds the filestore provider

Specified by:

153

getFileStorer in interface GridDispatcherRemote

Returns:

returns the proxy for filestore provider

Throws:

java.rmi.RemoteException

computePrime

public sorcer.base.ServiceContext

computePrime(sorcer.core.ProviderContext dispatcherCtx)

 throws

java.rmi.RemoteException

method to be invoked by SGrid Dispatcher UI

Parameters:

dispatcherCtx - Context sent by the UI

Throws:

java.rmi.RemoteException

computePrime

public sorcer.base.ServiceContext

computePrime(sorcer.base.ServiceContext dispatcherCtx)

 throws

java.rmi.RemoteException

this method is called internally

Specified by:

computePrime in interface GridDispatcherRemote

Parameters:

dispatcherCtx - Context sent by the UI

154

Returns:

ServiceContext with the compute results included

Throws:

java.rmi.RemoteException

init

public void init()

 throws java.rmi.RemoteException

Calls the init method of the superclass

Specified by:

init in interface sorcer.base.Provider

Throws:

java.rmi.RemoteException

getMainUIDescriptor

public net.jini.lookup.entry.UIDescriptor getMainUIDescriptor()

Create s UI descriptor to publish the UI

Specified by:

getMainUIDescriptor in interface sorcer.base.Provider

Returns:

returns the UI descriptor to be published

155

isValidTask

public boolean isValidTask()

Returns:

true if the task is valid

156

sorcer.provider.grid.dispatcher

Class GridDispatcherProviderImpl.Disco

java.lang.Object

sorcer.provider.grid.dispatcher.GridDispatcherProviderImpl.Disco

Enclosing class:

GridDispatcherProviderImpl

public static class GridDispatcherProviderImpl.Disco

extends java.lang.Object

The class which looks up for jobber proxy from the lookup service

Constructor Summary

GridDispatcherProviderImpl.Disco()

 The constructor for Disco class

Method Summary

 sorcer.core.FileStorer getFileStorer()

 Method finds the

filestore provider

 sorcer.core.Jobber getJobber()

 Tries to lookup for

157

the jobber proxy

 sorcer.core.provider.autonomicprovisioner.AutonomicProvisioner getProvisioner()

 Tries to lookup for

the

 void print(int i,

java.lang.Object obj)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

GridDispatcherProviderImpl.Disco

public GridDispatcherProviderImpl.Disco()

The constructor for Disco class

Method Detail

getJobber

public sorcer.core.Jobber getJobber()

Tries to lookup for the jobber proxy

Returns:

Returns the Jobber proxy if jobber is found

158

getProvisioner

public

sorcer.core.provider.autonomicprovisioner.AutonomicProvisioner

getProvisioner()

Tries to lookup for the

Returns:

Returns the AutonomicProvisioner proxy if AutonomicProvisioner is found

getFileStorer

public sorcer.core.FileStorer getFileStorer()

Method finds the filestore provider

Returns:

returns the proxy for filestore provider

print

public void print(int i,

 java.lang.Object obj)

159

sorcer.provider.grid.dispatcher

Class GridDispatcherProviderImpl.DispatcherResult

java.lang.Object

sorcer.provider.grid.dispatcher.GridDispatcherProviderImpl.DispatcherRe

sult

Enclosing class:

GridDispatcherProviderImpl

public static final class GridDispatcherProviderImpl.DispatcherResult

extends java.lang.Object

Class which waits for the return of the results from Caller

Field Summary

 java.net.URL outputURL

Constructor Summary

GridDispatcherProviderImpl.DispatcherResult(net.jini.core.event.RemoteEventListener callback)

GridDispatcherProviderImpl.DispatcherResult(java.lang.String resultFile)

160

Method Summary

 void doFinally()

 Writes the final outputs to the file and notifies the callback

 void done(sorcer.base.ServiceContext ctx)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

outputURL

public java.net.URL outputURL

Constructor Detail

GridDispatcherProviderImpl.DispatcherResult

public

GridDispatcherProviderImpl.DispatcherResult(java.lang.String resultFile

)

GridDispatcherProviderImpl.DispatcherResult

public

GridDispatcherProviderImpl.DispatcherResult(net.jini.core.event.RemoteE

ventListener callback)

161

Method Detail

done

public void done(sorcer.base.ServiceContext ctx)

doFinally

public void doFinally()

Writes the final outputs to the file and notifies the callback

162

sorcer.provider.grid.dispatcher

Class GridDispatcherProviderImpl.JobDispatcher

java.lang.Object

 java.lang.Thread

sorcer.provider.grid.dispatcher.GridDispatcherProviderImpl.JobDispatche

r

All Implemented Interfaces:

java.lang.Runnable

Enclosing class:

GridDispatcherProviderImpl

public static final class GridDispatcherProviderImpl.JobDispatcher

extends java.lang.Thread

Field Summary

Fields inherited from class java.lang.Thread

MAX_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

Constructor Summary

GridDispatcherProviderImpl.JobDispatcher(java.lang.String[] inputValues, int fromIndex,

int toIndex, java.lang.String notify, GridDispatcherProviderImpl.JobsDispatcher disp)

163

GridDispatcherProviderImpl.JobDispatcher(java.lang.String[] inputValues, int fromIndex,

int toIndex, java.lang.String notify, GridDispatcherProviderImpl.JobsDispatcher disp,

javax.security.auth.Subject client)

Method Summary

 sorcer.core.ServiceTask getTask(java.lang.String inputValue, int index)

 Creates a task from the caller context

 void run()

 Run method for the JobDispatcher thread

Methods inherited from class java.lang.Thread

activeCount, checkAccess, countStackFrames, currentThread, destroy, dumpStack, enumerate,

getContextClassLoader, getName, getPriority, getThreadGroup, holdsLock, interrupt, interrupted, isAlive,

isDaemon, isInterrupted, join, join, join, resume, setContextClassLoader, setDaemon, setName, setPriority,

sleep, sleep, start, stop, stop, suspend, toString, yield

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

164

Constructor Detail

GridDispatcherProviderImpl.JobDispatcher

public

GridDispatcherProviderImpl.JobDispatcher(java.lang.String[] inputValues

,

 int fromIndex,

 int toIndex,

java.lang.String notify,

GridDispatcherProviderImpl.JobsDispatcher disp)

GridDispatcherProviderImpl.JobDispatcher

public

GridDispatcherProviderImpl.JobDispatcher(java.lang.String[] inputValues

,

 int fromIndex,

 int toIndex,

java.lang.String notify,

GridDispatcherProviderImpl.JobsDispatcher disp,

javax.security.auth.Subject client)

Method Detail

run

public void run()

Run method for the JobDispatcher thread

getTask

public sorcer.core.ServiceTask

getTask(java.lang.String inputValue,

 int index)

Creates a task from the caller context

165

Parameters:

inputValue - inputValues for the executable

index - index values to keep track of number of tasks created

166

sorcer.provider.grid.dispatcher

Class GridDispatcherProviderImpl.JobsDispatcher

java.lang.Object

 java.lang.Thread

sorcer.provider.grid.dispatcher.GridDispatcherProviderImpl.JobsDispatch

er

All Implemented Interfaces:

java.lang.Runnable

Enclosing class:

GridDispatcherProviderImpl

public static final class GridDispatcherProviderImpl.JobsDispatcher

extends java.lang.Thread

Class for dispatching the job to the Jobber, internally used by JobDispatcher class

Field Summary

Fields inherited from class java.lang.Thread

MAX_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

Constructor Summary

167

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String[] inputValues, int jobSize,

java.lang.String notify, GridDispatcherProviderImpl.DispatcherResult result)

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String[] inputValues, int jobSize,

java.lang.String notify, GridDispatcherProviderImpl.DispatcherResult result,

javax.security.auth.Subject client)

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String inputFile, int jobSize,

java.lang.String notify, GridDispatcherProviderImpl.DispatcherResult result)

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String inputFile, int jobSize,

java.lang.String notify, GridDispatcherProviderImpl.DispatcherResult result,

javax.security.auth.Subject client)

Method Summary

 void done(sorcer.core.ServiceJob resultJob)

 Keeps track of the number of jobs returned with the result,

till all the results are obtained

 java.net.URL getOutputURL()

 java.lang.String[] parseInputFile()

168

 The method to parse input file to get all the input valuse

contained in the file

 void run()

 The run method of the thread

Methods inherited from class java.lang.Thread

activeCount, checkAccess, countStackFrames, currentThread, destroy, dumpStack, enumerate,

getContextClassLoader, getName, getPriority, getThreadGroup, holdsLock, interrupt, interrupted, isAlive,

isDaemon, isInterrupted, join, join, join, resume, setContextClassLoader, setDaemon, setName, setPriority,

sleep, sleep, start, stop, stop, suspend, toString, yield

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

GridDispatcherProviderImpl.JobsDispatcher

public

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String inputFile,

 int jobSize,

java.lang.String notify,

GridDispatcherProviderImpl.DispatcherResult result)
Parameters:

169

inputFile -

jobSize -

notify -

result -

GridDispatcherProviderImpl.JobsDispatcher

public

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String[] inputValue

s,

 int jobSize,

java.lang.String notify,

GridDispatcherProviderImpl.DispatcherResult result)
Parameters:

inputValues -

jobSize -

notify -

result -

GridDispatcherProviderImpl.JobsDispatcher

public

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String inputFile,

 int jobSize,

java.lang.String notify,

GridDispatcherProviderImpl.DispatcherResult result,

javax.security.auth.Subject client)

Parameters:

inputFile -

170

jobSize -

notify -

result -

client -

GridDispatcherProviderImpl.JobsDispatcher

public

GridDispatcherProviderImpl.JobsDispatcher(java.lang.String[] inputValue

s,

 int jobSize,

java.lang.String notify,

GridDispatcherProviderImpl.DispatcherResult result,

javax.security.auth.Subject client)

Parameters:

inputValues -

jobSize -

notify -

result -

client -

Method Detail

run

public void run()

The run method of the thread

171

parseInputFile

public java.lang.String[] parseInputFile()

The method to parse input file to get all the input valuse contained in the file

done

public void done(sorcer.core.ServiceJob resultJob)

Keeps track of the number of jobs returned with the result, till all the results are

obtained

getOutputURL

public java.net.URL getOutputURL()

172

sorcer.provider.grid.dispatcher

Class GridDispatcherUI

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 sorcer.core.security.ui.SecureSorcerUI

sorcer.provider.grid.dispatcher.GridDispatcherUI

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.event.ActionListener,

java.util.EventListener, java.awt.image.ImageObserver, java.awt.MenuContainer,

javax.swing.RootPaneContainer, java.io.Serializable, javax.swing.WindowConstants

public class GridDispatcherUI

extends sorcer.core.security.ui.SecureSorcerUI

The Class which renders the S Grid service UI

See Also:

Serialized Form

Nested Class Summary

static class GridDispatcherUI.DispatcherListener

 DispatcherListener Class listens for the results

173

Nested classes inherited from class sorcer.core.security.ui.SecureSorcerUI

sorcer.core.security.ui.SecureSorcerUI.AuditThread

Nested classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Nested classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Nested classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Nested classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

174

Field Summary

 int setSubjectTries

Fields inherited from class sorcer.core.security.ui.SecureSorcerUI

allowDelegation, auditor, cancelBtn, chbx, config, debug, getPasswdfld, getUsrnamefld,

gotSubject, loggedPrincipal, loggedSubject, loginBtn, preparedProxy

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR,

ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ, MAXIMIZED_VERT, MOVE_CURSOR,

N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR,

S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,

W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

175

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,

RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

GridDispatcherUI(java.lang.Object obj)

 Constructr for S Grid service UI

Method Summary

 void actionPerformed(java.awt.event.ActionEvent ae)

 Invoked when an action takes place on the UI

 void done()

 Resets the GUI after the results are obtained

 void recievedOutput(java.lang.String output)

176

 Appends the results to the output

 void setSubject(javax.security.auth.Subject subj, sorcer.base.ServiceContext ctx)

 sets the subject of the Context

Methods inherited from class sorcer.core.security.ui.SecureSorcerUI

debug, getAuthUI, getPreparedProxy, instantiate, prepareProxy

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext, getContentPane,

getDefaultCloseOperation, getGlassPane, getJMenuBar, getLayeredPane, getRootPane,

isDefaultLookAndFeelDecorated, isRootPaneCheckingEnabled, paramString, processWindowEvent,

remove, setContentPane, setDefaultCloseOperation, setDefaultLookAndFeelDecorated, setGlassPane,

setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getExtendedState, getFrames, getIconImage,

getMaximizedBounds, getMenuBar, getState, getTitle, isResizable, isUndecorated, remove, removeNotify,

setCursor, setExtendedState, setIconImage, setMaximizedBounds, setMenuBar, setResizable, setState,

setTitle, setUndecorated

177

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener, addWindowFocusListener,

addWindowListener, addWindowStateListener, applyResourceBundle, applyResourceBundle,

createBufferStrategy, createBufferStrategy, dispose, getBufferStrategy, getFocusableWindowState,

getFocusCycleRootAncestor, getFocusOwner, getFocusTraversalKeys, getGraphicsConfiguration,

getInputContext, getListeners, getLocale, getMostRecentFocusOwner, getOwnedWindows, getOwner,

getToolkit, getWarningString, getWindowFocusListeners, getWindowListeners, getWindowStateListeners,

hide, isActive, isFocusableWindow, isFocusCycleRoot, isFocused, isShowing, pack, postEvent,

processEvent, processWindowFocusEvent, processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, setCursor, setFocusableWindowState,

setFocusCycleRoot, setLocationRelativeTo, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, applyComponentOrientation,

areFocusTraversalKeysSet, countComponents, deliverEvent, doLayout, findComponentAt,

findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getContainerListeners, getFocusTraversalPolicy, getInsets,

getLayout, getMaximumSize, getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,

isFocusCycleRoot, isFocusTraversalPolicySet, layout, list, list, locate, minimumSize, paint,

paintComponents, preferredSize, print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setFocusTraversalKeys, setFocusTraversalPolicy, setFont,

transferFocusBackward, transferFocusDownCycle, validate, validateTree

178

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage, coalesceEvents,

contains, contains, createImage, createImage, createVolatileImage, createVolatileImage, disable,

disableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods, firePropertyChange,

firePropertyChange, firePropertyChange, getBackground, getBounds, getBounds, getColorModel,

getComponentListeners, getComponentOrientation, getCursor, getDropTarget, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground, getGraphics, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocation, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMouseWheelListeners, getName, getParent, getPeer,

getPropertyChangeListeners, getPropertyChangeListeners, getSize, getSize, getTreeLock, getWidth, getX,

getY, gotFocus, handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner, isFocusTraversable, isFontSet,

isForegroundSet, isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,

lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus,

paintAll, prepareImage, prepareImage, printAll, processComponentEvent, processFocusEvent,

processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, processKeyEvent,

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent, removeComponentListener,

removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener,

removeInputMethodListener, removeKeyListener, removeMouseListener, removeMouseMotionListener,

removeMouseWheelListener, removePropertyChangeListener, removePropertyChangeListener, repaint,

repaint, repaint, repaint, requestFocus, requestFocus, requestFocusInWindow, requestFocusInWindow,

reshape, resize, resize, setBackground, setBounds, setBounds, setComponentOrientation, setDropTarget,

setEnabled, setFocusable, setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

179

setLocation, setLocation, setName, setSize, setSize, setVisible, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Field Detail

setSubjectTries

public int setSubjectTries

Constructor Detail

GridDispatcherUI

public GridDispatcherUI(java.lang.Object obj)

Constructr for S Grid service UI

Parameters:

obj - the proxy object obtained from the Lookup service

Method Detail

180

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent ae)

Invoked when an action takes place on the UI

Parameters:

ae - the action event caused by the action

setSubject

public void setSubject(javax.security.auth.Subject subj,

 sorcer.base.ServiceContext ctx)

 throws sorcer.base.ContextException

sets the subject of the Context

Parameters:

subj - Subject which has logged in

ctx - The prepared context provided by the subject

Throws:

sorcer.base.ContextException

done

public void done()

Resets the GUI after the results are obtained

recievedOutput

public void recievedOutput(java.lang.String output)

Appends the results to the output

181

sorcer.provider.grid.dispatcher

Class GridDispatcherUI.DispatcherListener

java.lang.Object

sorcer.provider.grid.dispatcher.GridDispatcherUI.DispatcherListener

All Implemented Interfaces:

java.util.EventListener, java.rmi.Remote,

net.jini.core.event.RemoteEventListener, java.io.Serializable

Enclosing class:

GridDispatcherUI

public static final class GridDispatcherUI.DispatcherListener

extends java.lang.Object

implements net.jini.core.event.RemoteEventListener, java.io.Serializable,

java.rmi.Remote

DispatcherListener Class listens for the results

See Also:

Serialized Form

Field Summary

 GridDispatcherUI ui

182

Constructor Summary

GridDispatcherUI.DispatcherListener()

GridDispatcherUI.DispatcherListener(GridDispatcherUI pui)

Method Summary

 net.jini.core.event.RemoteEventListener getListener()

 gets a listener for the results

 void notify(net.jini.core.event.RemoteEvent event)

 notifies when outputs are obtained

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

ui

public transient GridDispatcherUI ui

Constructor Detail

183

GridDispatcherUI.DispatcherListener

public GridDispatcherUI.DispatcherListener()

GridDispatcherUI.DispatcherListener

public GridDispatcherUI.DispatcherListener(GridDispatcherUI pui)

Method Detail

getListener

public net.jini.core.event.RemoteEventListener getListener()

 throws

java.rmi.RemoteException

gets a listener for the results

Returns:

Returns a remote listener

Throws:

java.rmi.RemoteException

notify

public void notify(net.jini.core.event.RemoteEvent event)

 throws java.rmi.RemoteException

notifies when outputs are obtained

Specified by:

notify in interface net.jini.core.event.RemoteEventListener

Throws:

java.rmi.RemoteException

184

Package sorcer.security.permission

Class Summary

MethodPermission
This class is used to provide permission to the

Subject to invoke methods on the provides

sorcer.security.permission

Class MethodPermission

java.lang.Object

 java.security.Permission

 net.jini.security.AccessPermission

 sorcer.security.permission.MethodPermission

All Implemented Interfaces:

java.security.Guard, java.io.Serializable

public class MethodPermission

extends net.jini.security.AccessPermission

implements java.io.Serializable

This class is used to provide permission to the Subject to invoke methods on the provides

Author:

Abhijit Rai

See Also:

Serialized Form

185

Constructor Summary

MethodPermission(java.lang.String method)

 Creates a method permission object for the passed method

Methods inherited from class net.jini.security.AccessPermission

equals, getActions, hashCode, implies

Methods inherited from class java.security.Permission

checkGuard, getName, newPermissionCollection, toString

Methods inherited from class java.lang.Object

clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Detail

MethodPermission

public MethodPermission(java.lang.String method)

Creates a method permission object for the passed method

Parameters:

method - Mehtod name for which the permission needs to be granted

186

187

Package sorcer.core.security.ui

Class Summary

SecureSorcerUI Provides the security for the ServiceUI.

sorcer.core.security.ui

Class SecureSorcerUI

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 sorcer.core.security.ui.SecureSorcerUI

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.event.ActionListener,

java.util.EventListener, java.awt.image.ImageObserver, java.awt.MenuContainer,

javax.swing.RootPaneContainer, java.io.Serializable, javax.swing.WindowConstants

public class SecureSorcerUI

extends javax.swing.JFrame

implements java.awt.event.ActionListener

Provides the security for the ServiceUI. Any UI which subclasses this class will inherit its security
capabilities. The class does the following: - Prepares the proxy obtained from the lookup service
to enable constraints such as Mutual Authentication, Integrity etc. - Provides a UI (AuthUI) for the
User to Login and blocks (doesnt allow the service UI unless user is authenticated)

Author:

188

Abhijit Rai

See Also:

Serialized Form

Nested Class Summary

protected

 class

SecureSorcerUI.AuditThread

 (Depricated) Inner class which helps create a Audit thread to start

sending messages to Auditor ina different thread

Nested classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Nested classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Nested classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Nested classes inherited from class java.awt.Container

189

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

protected boolean allowDelegation

protected

 sorcer.core.Auditor

auditor

protected

 javax.swing.JButton

cancelBtn

protected

 javax.swing.JCheckBox

chbx

protected

 net.jini.config.Configuration

config

protected boolean debug

protected

 javax.swing.JPasswordField

getPasswdfld

190

protected

 javax.swing.JTextField

getUsrnamefld

protected boolean gotSubject

protected

 java.security.Principal

loggedPrincipal

protected

 javax.security.auth.Subject

loggedSubject

protected

 javax.swing.JButton

loginBtn

protected

 java.lang.Object

preparedProxy

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR,

ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ, MAXIMIZED_VERT, MOVE_CURSOR,

N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR,

S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,

191

W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,

RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

SecureSorcerUI()

SecureSorcerUI(java.lang.Object obj)

 The Constructor where Object is the obtained proxy.

Method Summary

192

 void actionPerformed(java.awt.event.ActionEvent e)

 Invoked when an action ocurs on the UI

protected

 void

debug(java.lang.String msg)

 debug method automatically looks for an Auditor (if not already

found one) and sends the message to the Auditor

protected

 void

getAuthUI()

 Renders the Authentiaction UI

protected

 java.lang.Object

getPreparedProxy()

 Returns the prepared proxy as object

 void instantiate()

 Instantiates The following system properties and fields for the UI

java.security.auth.login.config java.rmi.server.codebase

javax.net.ssl.trustStore (set to the user.home)

protected

 void

prepareProxy(java.lang.Object obj)

 prepare proxy method is called by the constructor to prepare the

proxy and sets the permissions to prepare the required proxy.

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext, getContentPane,

getDefaultCloseOperation, getGlassPane, getJMenuBar, getLayeredPane, getRootPane,

isDefaultLookAndFeelDecorated, isRootPaneCheckingEnabled, paramString, processWindowEvent,

remove, setContentPane, setDefaultCloseOperation, setDefaultLookAndFeelDecorated, setGlassPane,

193

setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getExtendedState, getFrames, getIconImage,

getMaximizedBounds, getMenuBar, getState, getTitle, isResizable, isUndecorated, remove, removeNotify,

setCursor, setExtendedState, setIconImage, setMaximizedBounds, setMenuBar, setResizable, setState,

setTitle, setUndecorated

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener, addWindowFocusListener,

addWindowListener, addWindowStateListener, applyResourceBundle, applyResourceBundle,

createBufferStrategy, createBufferStrategy, dispose, getBufferStrategy, getFocusableWindowState,

getFocusCycleRootAncestor, getFocusOwner, getFocusTraversalKeys, getGraphicsConfiguration,

getInputContext, getListeners, getLocale, getMostRecentFocusOwner, getOwnedWindows, getOwner,

getToolkit, getWarningString, getWindowFocusListeners, getWindowListeners, getWindowStateListeners,

hide, isActive, isFocusableWindow, isFocusCycleRoot, isFocused, isShowing, pack, postEvent,

processEvent, processWindowFocusEvent, processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, setCursor, setFocusableWindowState,

setFocusCycleRoot, setLocationRelativeTo, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, applyComponentOrientation,

194

areFocusTraversalKeysSet, countComponents, deliverEvent, doLayout, findComponentAt,

findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getContainerListeners, getFocusTraversalPolicy, getInsets,

getLayout, getMaximumSize, getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,

isFocusCycleRoot, isFocusTraversalPolicySet, layout, list, list, locate, minimumSize, paint,

paintComponents, preferredSize, print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setFocusTraversalKeys, setFocusTraversalPolicy, setFont,

transferFocusBackward, transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage, coalesceEvents,

contains, contains, createImage, createImage, createVolatileImage, createVolatileImage, disable,

disableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods, firePropertyChange,

firePropertyChange, firePropertyChange, getBackground, getBounds, getBounds, getColorModel,

getComponentListeners, getComponentOrientation, getCursor, getDropTarget, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground, getGraphics, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocation, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMouseWheelListeners, getName, getParent, getPeer,

getPropertyChangeListeners, getPropertyChangeListeners, getSize, getSize, getTreeLock, getWidth, getX,

getY, gotFocus, handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner, isFocusTraversable, isFontSet,

isForegroundSet, isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,

195

lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus,

paintAll, prepareImage, prepareImage, printAll, processComponentEvent, processFocusEvent,

processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, processKeyEvent,

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent, removeComponentListener,

removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener,

removeInputMethodListener, removeKeyListener, removeMouseListener, removeMouseMotionListener,

removeMouseWheelListener, removePropertyChangeListener, removePropertyChangeListener, repaint,

repaint, repaint, repaint, requestFocus, requestFocus, requestFocusInWindow, requestFocusInWindow,

reshape, resize, resize, setBackground, setBounds, setBounds, setComponentOrientation, setDropTarget,

setEnabled, setFocusable, setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

setLocation, setLocation, setName, setSize, setSize, setVisible, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Field Detail

getUsrnamefld

protected javax.swing.JTextField getUsrnamefld

196

getPasswdfld

protected javax.swing.JPasswordField getPasswdfld

loginBtn

protected javax.swing.JButton loginBtn

cancelBtn

protected javax.swing.JButton cancelBtn

chbx

protected javax.swing.JCheckBox chbx

auditor

protected sorcer.core.Auditor auditor

loggedSubject

protected javax.security.auth.Subject loggedSubject

loggedPrincipal

protected java.security.Principal loggedPrincipal

197

preparedProxy

protected java.lang.Object preparedProxy

config

protected net.jini.config.Configuration config

debug

protected boolean debug

gotSubject

protected boolean gotSubject

allowDelegation

protected boolean allowDelegation

Constructor Detail

SecureSorcerUI

public SecureSorcerUI(java.lang.Object obj)

The Constructor where Object is the obtained proxy. The subclass must call

super(obj) to enable this constructor to prepare proxy

Parameters:

obj - the proxy object obtained from the lookup service (obtained directly when

ServiceUI is invoked from the browser)

198

SecureSorcerUI

public SecureSorcerUI()

Method Detail

debug

protected void debug(java.lang.String msg)

debug method automatically looks for an Auditor (if not already found one) and

sends the message to the Auditor

Parameters:

msg - msg is the message to be sent to the Auditor

prepareProxy

protected void prepareProxy(java.lang.Object obj)

prepare proxy method is called by the constructor to prepare the proxy and sets

the permissions to prepare the required proxy. Requires client.ServiceUIProxyPreparer

field in the configuration file obtained from the codebase This field specify the

constraints to be put in the proxy while preparation presently the class looks by default

for "config/prepare-minimal.config" file in the specified codebase.

Parameters:

obj - the proxy object obtained from the lookup service (obtained directly when

ServiceUI is invoked from the browser), this parameter is passed by the constructor to

this method.

199

getPreparedProxy

protected java.lang.Object getPreparedProxy()

Returns the prepared proxy as object

Returns:

returns the preparpared proxy as the object

instantiate

public void instantiate()

Instantiates The following system properties and fields for the UI

java.security.auth.login.config java.rmi.server.codebase javax.net.ssl.trustStore (set to the

user.home)

getAuthUI

protected void getAuthUI()

 throws java.lang.Exception

Renders the Authentiaction UI

Throws:

java.lang.Exception

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

Invoked when an action ocurs on the UI

Specified by:

actionPerformed in interface java.awt.event.ActionListener

200

201

Package jgapp.jaas

Class Summary

PsswdLoginModule
Login module that checks a username and

password.

jgapp.jaas

Class PsswdLoginModule

java.lang.Object

 jgapp.jaas.PsswdLoginModule

All Implemented Interfaces:

javax.security.auth.spi.LoginModule

public class PsswdLoginModule

extends java.lang.Object

implements javax.security.auth.spi.LoginModule

Login module that checks a username and password.

Constructor Summary

PsswdLoginModule()

202

Method Summary

 boolean abort()

 Called if overall login failed to abort authentication process If the

login succeded, then this method cleans up any saved state

 boolean commit()

 This is called if all logins succeeded.

 void initialize(javax.security.auth.Subject subject,

javax.security.auth.callback.CallbackHandler callbackHandler,

java.util.Map sharedState, java.util.Map options)

 Initializes the login module.

 boolean login()

 Attempt to log a user in

 boolean logout()

 Logout the user.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

PsswdLoginModule

public PsswdLoginModule()

203

Method Detail

initialize

public void initialize(javax.security.auth.Subject subject,

javax.security.auth.callback.CallbackHandler callbackHandler,

 java.util.Map sharedState,

 java.util.Map options)

Initializes the login module.

Specified by:

initialize in interface javax.security.auth.spi.LoginModule

Parameters:

subject - Subject to be logged in

callbackHandler - Callback handler for handling call backs

sharedState - shared state of the server

options - other options

login

public boolean login()

 throws javax.security.auth.login.LoginException

Attempt to log a user in

Specified by:

login in interface javax.security.auth.spi.LoginModule

Returns:

Returns whether the login was sucessful or not

Throws:

javax.security.auth.login.LoginException

204

commit

public boolean commit()

 throws javax.security.auth.login.LoginException

This is called if all logins succeeded.

Specified by:

commit in interface javax.security.auth.spi.LoginModule

Returns:

Returns true if the commit is succeded

Throws:

javax.security.auth.login.LoginException

abort

public boolean abort()

 throws javax.security.auth.login.LoginException

Called if overall login failed to abort authentication process If the login succeded,

then this method cleans up any saved state

Specified by:

abort in interface javax.security.auth.spi.LoginModule

Returns:

Returns true if this method succeded, false if the loginModule shall be ignored

Throws:

javax.security.auth.login.LoginException

205

logout

public boolean logout()

 throws javax.security.auth.login.LoginException

Logout the user.

Specified by:

logout in interface javax.security.auth.spi.LoginModule

Returns:

Returns true if this method succeded, false if the loginModule shall be ignored

Throws:

javax.security.auth.login.LoginException

206

PERMISSION TO COPY

 In presenting this thesis in partial fulfillment of the requirements for a master’s

degree at Texas Tech University or Texas Tech University Health Sciences Center, I

agree that the Library and my major department shall make it freely available for research

purposes. Permission to copy this thesis for scholarly purposes may be granted by the

Director of the Library or my major professor. It is understood that any copying or

publication of this thesis for financial gain shall not be allowed without my further

written permission and that any user may be liable for copyright infringement.

Agree (Permission is granted.)

_______Abhijit Rai ______________________________ __4/28/05 ________
 Student Signature Date

Disagree (Permission is not granted.)

___ _________________
 Student Signature Date

