
THE JINI SECURITY MODEL
REVISITED (REDUX)
Brian Murphy
Sun Microsystems

2

Basic Security Concepts
• Authentication
> Tell me 'who' you are, and prove it

• Authorization and access control
> Based on who you are, this is what I'll allow you to do

• Integrity
> Guarantee no one has has corrupted your communication
>Cryptographic checksums

• Confidentiality
> Guarantee no one is 'listening' – communication has not

been intercepted
> Encryption

3

JavaTM Authentication – JAAS

• Securely determine who is executing Java code

• Pluggable infrastructure
> Implements PAM - Pluggable Authentication Module

• To determine how authentication should be done

> javax.security.auth.login. LoginContext

> javax.security.auth.login. Configuration

• Provider: javax.security.auth.spi.LoginModule
> com.sun.security.auth.module.KeyStoreLoginModule (JSSE)
> com.sun.security.auth.module.Krb5LoginModule (Kerberos)

Java Authentication And Authorization Service

4

Java Authorization – JAAS (Again)

• Ensure authenticated user has permission to
perform requested actions

• Extends Java access control mechanism
> Standard access control based on codesource
>Where the code originated from

>Who signed the code

> Extended to also be based on the user or entity running
the code
>Represented by javax.security.auth.Subject

>With java.security.Principal's and credentials

5

Java Access Control – Policy File

• Keystore entry
> Lookup public keys of signers
> Map principal aliases to X.509 distinguished names

• Grant entries
> CodeBase – location of the code being executed
> SignedBy – public key certificate alias to verify signature
> Principal – 'who' the code is executing as

• Permission entries
> Permission class name with target and action
> SignedBy

6

Secure Message Exchange

• Java Secure Socket Extension – JSSE
> Java version of SSL/TLS protocols (RFC 2246)
> Pluggable, provider architecture
> Socket based communication

• Java Generic Security Services API (RFC 2853)
> Kerberos Version 5 (RFC 1964)
> Selective encryption
> Token based communication

• Used in conjunction with JAAS for authentication

Authentication, Integrity, Confidentiality – JSSE & JGSS API

7

JAAS LoginContext And Subject
 public void main(String[] args) throws Exception {
 final LoginContext loginContext =
 new LoginContext(“app-client.jaas.login”);
 try {
 loginContext.login();
 Subject.doAsPrivileged (
 loginContext.getSubject(),
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 Client thisClass = new Client();
 thisClass.runClient();
 return null;
 }//end run
 },//end PrivilegedExceptionAction
 null
);//end doAsPrivileged
 } catch(Throwable e) { e.printStackTrace(); }
 }//end main

8

JAAS Login Config File – JSSE

app-client.jaas.login {
 com.sun.security.auth.module.KeyStoreLoginModule
 required
 keyStoreAlias=”app-client”
 keyStoreURL=”file:/home/app/jsse/app-client.keystore”
 keyStorePasswordURL=”file:/home/app/jsse/
 app-client.passwd”;
};

app-admin.jaas.login {
 com.sun.security.auth.module.KeyStoreLoginModule
 required
 keyStoreAlias=”app-admin”
 keyStoreURL=”file:/home/app/jsse/app-admin.keystore”
};

-Djava.security.auth.login.config=/home/app/config/jsse.login

9

JAAS Login Config File – Kerberos
-Djava.security.auth.login.config=/home/app/config/kerb.login

app-client.jaas.login {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab=”/home/app/kerb/servers.keytab”
 storeKey=true
 doNotPrompt=true
 principal=”app-client”
};

app-admin.jaas.login {
 com.sun.security.auth.module.Krb5LoginModule required
 storeKey=true
};

10

Java Policy File – JSSE
keystore “file:/home/certs/public.truststore”;

...................

grant codebase “http://cHost.sun.com:8080/client-dl.jar”
 signedBy “certs.cto.sun.boston.ma.usa”
 principal “app-client”
{
 permission app.service.ServerPermission “getPrice”;
};

grant codebase “http://cHost.sun.com:8080/admin-dl.jar”
 signedBy “certs.cto.sun.boston.ma.usa”
 principal “app-admin”
{
 permission java.io.FilePermission “/tmp/log”,
 “read, write”;

 permission app.service.ServerPermission “administer”;
 permission app.service.ServerPermission “shutdown”;
};

11

Java Policy File – Kerberos
...................

grant codebase “http://cHost.sun.com:8080/client-dl.jar”
 signedBy “certs.cto.sun.boston.ma.usa”
 principal
 javax.security.auth.kerberos.KerberosPrincipal
 “app-client”
{
 permission app.service.ServerPermission “getPrice”;
};

grant codebase “http://cHost.sun.com:8080/admin-dl.jar”
 signedBy “certs.cto.sun.boston.ma.usa”
 principal
 javax.security.auth.kerberos.KerberosPrincipal
 “app-admin”
{
 permission java.io.FilePermission “/tmp/log”,
 “read, write”;
 permission app.service.ServerPermission “administer”;
 permission app.service.ServerPermission “shutdown”;
};

12

The Java Remote Call Model

• Remote object is exported on the server side

> Produces a proxy to the remote object

• Client side obtains the proxy somehow (RMI
Registry, Lookup Service, UDDI, etc.)

> Code may be downloaded in the process

• Execution of the call is initiated on the client side

• Communication between client and server occurs

• Execution of the call occurs on the server side

13

The Java Remote Call Model In Action

Call foo()

foo() Return

'Server' Side'Client' Side

Serialized
Proxy

Class
Defs

Proxy

Registry

Class Server

Code

Data

Make exported
Remote object
available to
clients

14

Network Security Model Requirements
• Provide basic network security for remote calls
> Mutual authentication
>Server authenticates the client and vice-versa

> Mutual authorization and access control
> Object integrity (code as well as data integrity)
> Confidentiality

• Consistent with principles of Jini technology
> The network cannot be ignored (Deutsche's 7 fallacies)
> Agreement is in the public interface
> Code is moved

15

The Remote Call Model And Security
• Problem: how to operate securely in the face of
> Remote calls
> Downloaded code

• Java security gets us only so far
> No mechanism for verifying 'foreign' code can be trusted
> Static policy
>No mechanism for granting permissions dynamically

> Dealing with the dynamic nature of RMI communication
>Custom socket factories can be inflexible

• Java provider model (SPI's) gets us only so far
> Configuration can be tedious and inflexible

16

The Constraint Model

• Specify what a Subject must do, must not do
> Server/ClientAuthentication.YES/NO (JAAS Subjects)
> Integrity.YES/NO
> Confidentiality.YES/NO
> Quality of service (max. threads, connection timeout, etc.)

• Enforced on a per-method basis
> Example: authenticate on write, but anonymous for read

• Proxy implements RemoteMethodControl interface
> Indicates proxy supports network security
> Allows client to attach constraints to proxy

Providing Authentication, Integrity, Confidentiality

17

Call foo()

foo() Return

'Server' Side

'Client' Side

Serialized
Proxy

Class
Defs

Proxy

Registry

Class Server
Integrity of code downloaded out of
band is provided by integrity-protecting
codebase

Data

Code

Integrity of data is provided
by the transport layer

Object Integrity & The Remote Model

18

Providing Object Integrity
• Verify integrity of code as well as data

> Data verification handled by transport layer

> Code verification requires integrity-protecting codebases

• Integrity-protecting codebases

> HTTPS URLs (can have high overhead)

> HTTPMD URLs with JAR files (MD = Message Digest)
>Digest integrity covered by in band integrity verification

> httpmd://raglan.sun.com:8080/reggie-dl.jar;md=3dc20ac6
b7b854b24224c8ade7b30db5

• Other schemes possible – pluggable API

19

Proxy Trust Verification

• Client receives and executes 'foreign' proxy code
> Client must verify that the proxy code can be trusted
> Before granting any permissions to the proxy
> Before making any remote calls through the proxy

• Solution: proxy trust verifiers
> Client obtains a verifier from the trusted server
> Through verifier, asks server if proxy can be trusted

• Trust verifiers minimize client's prior knowledge
> Client has to know only who the server authenticates as
> Client needs to know nothing else
>Not codebase or signers or protocols

> Allow server impl changes without client reconfiguration

Downloaded Code Presents A Unique Problem

20

Providing Authorization

• Once a Subject is authenticated, determine actions
allowed by that Subject

• Standard Java access control mechanism
> Static permission grants in security policy
> Specify what a Subject (and/or codesource) can do

• Also requires a mechanism for granting
permissions dynamically – dynamic policy provider
> 'Foreign' code is downloaded into client's VM
> Codesource not necessarily known in advance

Downloaded Code And Dynamic Policy

21

Impact On The Remote Call Model

• Server side: exporting Remote objects
> Specify the communication transport (SSL, Kerberos, etc.)

> Specify required permissions for access control

> Attach constraints from server side's point of view

• Client side: proxy preparation
> Verify that the proxy can be trusted

> Attach constraints to the proxy

> Grant necessary permissions to the proxy

Server Side vs Client Side: Exporters And ProxyPreparers

22

Supporting Security In The Model

• Current RMI implementations not aware of the
new network security model or constraints
> RMI/JRMP, RMI/IIOP

• Jini ERI (“RMI 2.0”)
> Supports constraints and the network security model
> Provides customizable server-side authorization
>Method-level permission checks against authenticated clients

> Provides code integrity in client-side invocation layer
> Supports pluggable transport providers
> SSL & HTTPS (JSSE), Kerberos (GSS), TCP, HTTP, JXTA

A New RMI Implementation – Jini Extensible Remote Invocation

23

Deployment-Time Configuration

• Need ability to change secure configuration without
changing/recompiling code

• Need to configure complex Java objects
> Exporters and ProxyPreparers
> Not just Strings and primitive types
> Name=Value pairs not enough
> Java property files, XML configuration files, text files

• Extensible and pluggable
> Configuration provider set via resource

New Mechanism For Expressing Network Security Requirements

24

Server Side Configuration
Configuring An Exporter

app.service {
..............
private endpt = SSlServerEndpoint.getInstance(0);

private constraints = new BasicMethodConstraints
 (new InvocationConstraints
 (new InvocationConstraint[]{Integrity.YES},
 null));

private ilFactory = new ProxyTrustILFactory
 (constraints,
 ServerPermission.class);

serverExporter = new BasicJeriExporter
 (endpt, ilFactory);
..............

}//end app.service

25

Impact On Security Policy

keystore “file:/home/certs/public.truststore;”

grant codebase “file:/home/app/lib/app-service.jar {
 permission java.security.AllPermission “”, “”;
};

grant principal “app-client” {
 permission app.service.ServerPermission “getPrice”;
};

grant principal “app-admin” {
 permission java.io.FilePermission “/tmp/log”,
 “read, write”;
 permission app.service.ServerPermission “administer”;
 permission app.service.ServerPermission “shutdown”;
};

Server Side Policy File (JSSE)

26

Client Side Configuration
Configuring A ProxyPreparer

app.client {
..............
private verifyTrust = true;
private constraints /* next slide for details */
 = new BasicMethodConstraints(...);
private dynamicPermissions /* slide after next */
 = new Permission[] {...};

proxyPreparer = new BasicProxyPreparer
 (verifyTrust,
 constraints,
 dynamicPermissions);
..............
loginContext = new LoginContext
 (“app-client.jaas.login”);

}//end app.client

27

Detail: Constraints Configuration
Configuring A ProxyPreparer

..............

private reqs = new InvocationConstraint[]
 { Integrity.YES,
 ClientAuthentication.YES,
 ServerAuthentication.YES,
 new ServerMinPrincipal(serverPrincipal) };

private prefs = null;

private reqsAndPrefs =
 new InvocationConstraints(reqs, prefs);

private constraints =
 new BasicMethodConstraints(reqsAndPrefs);

28

Detail: Dynamic Permissions Config
Configuring A ProxyPreparer

..............

private dynamicPermissions = new Permission[]
{ new AuthenticationPermission(clientPrincipal,
 serverPrincipal,
 ”connect”) };

• When a ”connect” request is made through the
proxy to any server that authenticates as the
principal referenced by serverPrincipal

• Grant permission – to the proxy – to authenticate
(run) as the principal referenced by clientPrincipal

29

Client Code With Jini Configuration
public void main(String[] args) throws Exception {
 try {
 cfg = ConfigurationProvider.getInstance(...);
 try {
 loginContext = (LoginContext)config.getEntry
 (“app.client”, “loginContext”, ...);
 loginContext.login();
 Subject.doAsPrivileged (
 loginContext.getSubject(),
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 Client thisClass = new Client(cfg);
 thisClass.runClient();
 return null;
 }//end run
 },//end PrivilegedExceptionAction
 null
);//end doAsPrivileged
 } catch(NoSuchEntryException e0) {//no Subject
 Client thisClass = new Client(cfg);
 thisClass.runClient();
 } catch(Throwable e1) { e1.printStackTrace(); }
 }//end main

30

Summary – Extending Java Security

• Provide network security in the face of remote calls
and downloaded code
> Authentication, authorization & access control, object

integrity, confidentiality

• New concepts and mechanisms
> Constraints
> Proxy trust verification
> Dynamic policy
> Proxy preparation
> Verify trust, attach constraints, set necessary permissions

> A new RMI implementation – Jini ERI
> Deployment-time configuration of complex objects

THE JINI SECURITY MODEL
REVISITED (REDUX)

Brian Murphy
brian.t.murphy@sun.com

mailto:brian.t.murphy@sun.com

