THE JINI SECURITY MODEL
REVISITED (REDUX)

Basic Security Concepts

» Authentication
> Tell me 'who' you are, and prove it

» Authorization and access control
> Based on who you are, this is what I'll allow you to do

* Integrity
> Guarantee no one has has corrupted your communication
> Cryptographic checksums

- Confidentiality

> Guarantee no one is 'listening’ — communication has not
been intercepted
> Encryption

Java™ Authentication — JAAS

Java Authentication And Authorization Service
* Securely determine who is executing Java code

* Pluggable infrastructure
> Implements PAM - Pluggable Authentication Module

* To determine how authentication should be done
> javax.security.auth.login. LoginContext

> javax.security.auth.login. Configuration

* Provider: javax.security.auth.spi.LoginModule

> com.sun.security.auth.module.KeyStoreLoginModule (JSSE)
> com.sun.security.auth.module.Krb5LoginModule (Kerberos)

Java Authorization — JAAS (Again)

* Ensure authenticated user has permission to
perform requested actions

» Extends Java access control mechanism

> Standard access control based on codesource
> Where the code originated from
> Who signed the code
> Extended to also be based on the user or entity running
the code
> Represented by javax.security.auth.Subject
> With java.security.Principal’s and credentials

Java Access Control — Policy File

- Keystore entry

> Lookup public keys of signers
> Map principal aliases to X.509 distinguished names
» Grant entries
> CodeBase - location of the code being executed
> SignedBy - public key certificate alias to verify signature
> Principal — 'who' the code Is executing as

» Permission entries
> Permission class name with target and action
> SignedBy

Secure Message Exchange
Authentication, Integrity, Confidentiality — JSSE & JGSS API

» Java Secure Socket Extension — JSSE

> Java version of SSL/TLS protocols (RFC 2246)
> Pluggable, provider architecture
> Socket based communication

- Java Generic Security Services API (RFC 2853)
> Kerberos Version 5 (RFC 1964)
> Selective encryption
> Token based communication

» Used in conjunction with JAAS for authentication

JAAS LoginContext And Subject

public void main (String[] args) throws Exception ({
final LoginContext loginContext =
new LoginContext (“app-client.jaas.login”) ;
try {
loginContext.login () ;
Subject.doAsPrivileged (
loginContext.getSubject(),
new PrivilegedExceptionAction() {
public Object run() throws Exception ({
Client thisClass = new Client() ;
thisClass.runClient() ;
return null;
}//end run
},//end PrivilegedExceptionAction
null
) ;//end doAsPrivileged
} catch(Throwable e) { e.printStackTrace(); }
}//end main

7

JAAS Login Config File — JSSE

-Djava.security.auth.login.config=/home/app/config/jsse.login

app-client. jaas.login {
com. sun. security.auth.module.KeyStorelL.oginModule
required
keyStoreAlias="app-client”
keyStoreURL="file: /home/app/jsse/app-client.keystore”
keyStorePasswordURL="file: /home/app/jsse/
app-client.passwd”;

};

app-admin. jaas.login {
com. sun. security.auth.module.KeyStorelLoginModule
required
keyStoreAlias="app-admin”
keyStoreURL="file: /home/app/jsse/app-admin.keystore”
};

JAAS Login Config File — Kerberos

-Djava.security.auth.login.config=/home/app/config/kerb.login

app-client. jaas.login ({
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab="/home/app/kerb/servers.keytab”
storeKey=true
doNotPrompt=true
principal="app-client”

};

app-admin. jaas.login {
com. sun. security.auth.module.Krb5LoginModule required
storeKey=true

};

Java Policy File — JSSE

keystore “file:/home/certs/public.truststore”;

grant codebase “http://cHost.sun.com:8080/client-dl.jar”
signedBy “certs.cto.sun.boston.ma.usa”
principal “app-client”

{
};

permission app.service.ServerPermission “getPrice”;

grant codebase “http://cHost.sun.com:8080/admin-dl.jar”
signedBy “certs.cto.sun.boston.ma.usa”
principal “app-admin”

permission java.io.FilePermission “/tmp/log”,
“read, write”;

permission app.service.ServerPermission “administer”;
permission app.service.ServerPermission “shutdown”;

};

10

Java Policy File — Kerberos

grant codebase “http://cHost.sun.com:8080/client-dl.jar”
signedBy ‘“certs.cto.sun.boston.ma.usa”
principal
javax.security.auth.kerberos.KerberosPrincipal
“app-client”

{
};

grant codebase “http://cHost.sun.com:8080/admin-dl.jar”
signedBy ‘“certs.cto.sun.boston.ma.usa”
principal
javax.security.auth.kerberos.KerberosPrincipal
“app-admin”

permission app.service.ServerPermission “getPrice”;

permission java.io.FilePermission “/tmp/log”,

“read, write”;
permission app.service.ServerPermission “administer”;
permission app.service.ServerPermission “shutdown”;

};

11

The Java Remote Call Model

» Remote object is exported on the server side

> Produces a proxy to the remote object

» Client side obtains the proxy somehow (RMI
Registry, Lookup Service, UDDI, etc.)

> Code may be downloaded in the process
 Execution of the call is initiated on the client side
* Communication between client and server occurs

» Execution of the call occurs on the server side

The Java Remote Call Model In Action

'Client' Side code 'Server' Side

Call foo()

foo() Return

Make exported

C Renot e obj ect
Serialized avail able to

Proxy clients

13

Network Security Model Requirements

* Provide basic network security for remote calls

> Mutual authentication
>Server authenticates the client and vice-versa

> Mutual authorization and access control
> Object integrity (code as well as data integrity)
> Confidentiality

> Consistent with principles of Jini technology
> The network cannot be ignored (Deutsche's 7 fallacies)
> Agreement is in the public interface
> Code is moved

The Remote Call Model And Security

* Problem: how to operate securely in the face of

> Remote calls
> Downloaded code

- Java security gets us only so far
> No mechanism for verifying ‘foreign' code can be trusted
> Static policy
> No mechanism for granting permissions dynamically

> Dealing with the dynamic nature of RMI communication
> Custom socket factories can be inflexible

- Java provider model (SPI's) gets us only so far
> Configuration can be tedious and inflexible

15

The Constraint Model

Providing Authentication, Integrity, Confidentiality

» Specify what a Subject must do, must not do
> Server/ClientAuthentication.YES/NO (JAAS Subjects)
> Integrity. YES/NO
> Confidentiality. YES/NO
> Quality of service (max. threads, connection timeout, etc.)

- Enforced on a per-method basis
> Example: authenticate on write, but anonymous for read

* Proxy implements RemoteMethodControl interface

> Indicates proxy supports network security
> Allows client to attach constraints to proxy

Object Integrity & The Remote Model

Integrity of code downloaded out of
band is provided by integrity-protecting
codebase

Code

'‘Server' Side

Call foo()

foo() Return

'Client' Side Data

Integrity of data is provided Y T—
by the transport layer Proxy

17

Providing Object Integrity
» Verify integrity of code as well as data

> Data verification handled by transport layer
> Code verification requires integrity-protecting codebases

* Integrity-protecting codebases

> HTTPS URLs (can have high overhead)
> HTTPMD URLs with JAR files (MD = Message Digest)

> Digest integrity covered by in band integrity verification

> httpmd://raglan.sun.com:8080/reggie-dl.jar;md=3dc20ac6
b7b854b24224c8ade7b30db5

» Other schemes possible — pluggable API

18

Proxy Trust Verification

Downloaded Code Presents A Unique Problem
- Client receives and executes 'foreign’ proxy code

> Client must verify that the proxy code can be trusted
> Before granting any permissions to the proxy
> Before making any remote calls through the proxy
» Solution: proxy trust verifiers
> Client obtains a verifier from the trusted server
> Through verifier, asks server if proxy can be trusted

» Trust verifiers minimize client's prior knowledge

> Client has to know only who the server authenticates as

> Client needs to know nothing else
> Not codebase or signers or protocols

> Allow server impl changes without client reconfiguration

19

Providing Authorization
Downloaded Code And Dynamic Policy

» Once a Subject is authenticated, determine actions
allowed by that Subject

» Standard Java access control mechanism

> Static permission grants in security policy
> Specify what a Subject (and/or codesource) can do

» Also requires a mechanism for granting
permissions dynamically — dynamic policy provider

> 'Foreign' code is downloaded into client's VM
> Codesource not necessarily known in advance

Impact On The Remote Call Model

Server Side vs Client Side: Exporters And ProxyPreparers

» Server side: exporting Remote objects
> Specify the communication transport (SSL, Kerberos, etc.)
> Specify required permissions for access control
> Attach constraints from server side's point of view

» Client side: proxy preparation
> Verify that the proxy can be trusted
> Attach constraints to the proxy
> Grant necessary permissions to the proxy

Supporting Security In The Model

A New RMI Implementation - Jini Extensible Remote Invocation

* Current RMI implementations not aware of the
new network security model or constraints

> RMI/JRMP, RMI/IIOP

» Jini ERI ("RMI 2.07)

> Supports constraints and the network security model
> Provides customizable server-side authorization

> Method-level permission checks against authenticated clients
> Provides code integrity in client-side invocation layer

> Supports pluggable transport providers
> SSL & HTTPS (JSSE), Kerberos (GSS), TCP, HTTP, JXTA

Deployment-Time Configuration

New Mechanism For Expressing Network Security Requirements

* Need ability to change secure configuration without
changing/recompiling code

» Need to configure complex Java objects
> Exporters and ProxyPreparers
> Not just Strings and primitive types

> Name=Value pairs not enough
> Java property files, XML configuration files, text files

» Extensible and pluggable
> Configuration provider set via resource

Server Side Configuration
Configuring An Exporter

app.service {

private endpt = SSlServerEndpoint.getInstance (0) ;

private constraints = new BasicMethodConstraints
(new InvocationConstraints
(new InvocationConstraint[] {Integrity.YES},
null));

private ilFactory = new ProxyTrustILFactory
(constraints,

ServerPermission.class) ;

serverExporter = new BasicJeriExporter
(endpt, ilFactory);

}//end app.service

24

Impact On Security Policy

Server Side Policy File (JSSE)

keystore “file:/home/certs/public.truststore;”

grant codebase “file:/home/app/lib/app-service.jar {
permission java.security.AllPermission “”, “7;
};

grant principal “app-client” {
permission app.service.ServerPermission “getPrice”;
}i

grant principal “app-admin” {
permission java.io.FilePermission “/tmp/log”,
“read, write”;
permission app.service.ServerPermission “administer”;
permission app.service.ServerPermission “shutdown”;

};

25

Client Side Configuration
Configuring A ProxyPreparer

app.client {

private verifyTrust = true;

private constraints /* next slide for details */
= new BasicMethodConstraints(...);

private dynamicPermissions /* slide after next */
= new Permission|[] {...};

proxyPreparer = new BasicProxyPreparer
(verifyTrust,

constraints,
dynamicPermissions) ;

loginContext = new LoginContext
(“app-client. jaas.login”) ;
}//end app.client

26

Detail: Constraints Configuration
Configuring A ProxyPreparer

private reqs = new InvocationConstraint]|]
{ Integrity.YES,
ClientAuthentication.YES,
ServerAuthentication.YES,
new ServerMinPrincipal (serverPrincipal) };

private

private

private

27

prefs = null;

regsAndPrefs =
new InvocationConstraints (reqs, prefs);

constraints =
new BasicMethodConstraints (regsAndPrefs) ;

Detail: Dynamic Permissions Config
Configuring A ProxyPreparer

private dynamicPermissions = new Permission]]
{ new AuthenticationPermission(clientPrincipal,

serverPrincipal,
“connect”) };

- When a "connect’ request is made through the
proxy to any server that authenticates as the
principal referenced by serverPrincipal

» Grant permission — to the proxy — to authenticate
(run) as the principal referenced by clientPrincipal

28

Client Code With Jini Configuration

public void main (String[] args) throws Exception ({
try {
cfg = ConfigurationProvider.getInstance(...);
try {
loginContext = (LoginContext)config.getEntry
(Y“app.client”, “loginContext”, ...);
loginContext.login() ;
Subject.doAsPrivileged (
loginContext.getSubject(),
new PrivilegedExceptionAction () {
public Object run() throws Exception {
Client thisClass = new Client (cfgqg);
thisClass.runClient() ;
return null;
}//end run
},//end PrivilegedExceptionAction
null
) ;//end doAsPrivileged
} catch (NoSuchEntryException e0) {//no Subject
Client thisClass = new Client(cfqg) ;
thisClass.runClient() ;
} catch(Throwable el) { el.printStackTrace(); }
}//end main

29

Summary — Extending Java Security

» Provide network security in the face of remote calls
and downloaded code

> Authentication, authorization & access control, object
integrity, confidentiality

» New concepts and mechanisms
> Constraints
> Proxy trust verification
> Dynamic policy
> Proxy preparation
> Verify trust, attach constraints, set necessary permissions
> A new RMI implementation — Jini ERI
> Deployment-time configuration of complex objects

30

THE JINI SECURITY MODEL
REVISITED (REDUX)

mailto:brian.t.murphy@sun.com

