
Preliminary Design using Distributed Service-Based Computing

Sanjay Goel
University at Albany, State University of New York, goel@albany.edu

Shashishekara S. Talya
General Electric Global Research Center, talya@crd.ge.com

Michael Sobolewski
Texas Tech University, sobol@cs.ttu.edu

ABSTRACT: This paper presents an application of a distributed service-oriented architecture (FIPER) to the
preliminary design of gas turbine. In this application, a one-dimensional analysis code is wrapped into an in-
terface to create a network service. Several of these services are distributed across a grid of workstations. The
FIPER architecture uses a service catalog that registers all the services that are started on the network. These
services are then discovered in real time and used by the design process. This architecture is used to simulate
the turbine configuration optimization process that requires repeated evaluations of the analysis code. The pa-
per presents the scaling results when different number of services is started on the network

1 INRODUCTION

Design of engineering systems such as gas turbines
involve a complex process with multiple steps and
several feedback loops. The design entails an inter-
action between several engineering disciplines, such
as, heat transfer, aerodynamics, and structural analy-
sis. The objective of the design is to satisfy the prob-
lem constraints and to maximize the performance of
the design. Different metrics of performance are
used for different types of design, for instance, in a
power-generation turbine the objective is to maxi-
mize the fuel efficiency and in a fighter-engine tur-
bine the objective would be to get maximum thrust.
Such designs do not have a closed form solution,
however, analysis codes that can numerically com-
pute the performance of specific design configura-
tions are available. The design thus involves alter-
nate configurations of the design from which the
best design that maximizes the performance of the
design is selected. Designers often use expert judg-
ments based upon prior experience to select alternate
configurations of the design. Designers are able to
quickly narrow down the search space however this
is a labor-intensive activity that requires expertise of
skilled designers that are not easily available.
There is thus a strong incentive to automate these
processes using integration environments that can
capture the designer intelligence. While automating
the design process, the problem is posed as an opti-
mization problem and the analysis code is iteratively
executed where an optimization algorithm deter-

mines the alternate configurations. These automa-
tions have the advantage of faster execution speeds,
however, they perform poorly in decision-making
compared to skilled designers. The automated de-
sign processes thus require a relatively larger num-
ber of iterations to determine the solution. The opti-
mization is typically executed on a single node
where the design iterations are sequentially run. Al-
though each analysis executes relatively quickly a
computational bottleneck is created, as a large num-
ber of analysis runs are required especially when us-
ing stochastic optimization technique such as genetic
algorithms for driving the optimization.
Use of distributed computing alleviates the computa-
tional bottleneck by rapidly evaluating multiple con-
figurations simultaneously on multiple nodes. Use of
distributed environments is typically plagued with
high maintenance cost and low reliability primarily
due to lack of network reliability. Use of a service-
based distributed architecture reduces the mainte-
nance overhead, adds robustness to the distributed
architecture, and improves the resource utilization of
the network resources. In addition, a service-based
architecture fosters a dynamic mapping of analysis
codes into the design process allowing the processes
to evolve without jeopardizing the automation of the
processes.
This paper presents the application of FIPER, a ser-
vice-based architecture developed for distributed
computing in an engineering environment, to solve
the turbine design problem. The work presented in
this paper utilizes the architecture developed at the

113

Next Generation Concurrent Engineering - M. Sobolewski & P. Ghodous (eds)
© 2005 ISPE, Inc., ISBN 0-9768246-0-4

General Electric Company under the National Insti-
tute of Standards and Technology Advanced Tech-
nology Program (NIST-ATP) Federated Intelligent
Product EnviRonment (FIPER) contract [1]. The
FIPER contract was a four year (1999-2003), $21.5
million NIST-ATP project that teamed General
Electric with Engineous Software Incorporated
(ESI), Goodrich, Parker Hannifin, Ohio Aerospace
Institute, and Ohio University. The goal of the
FIPER contract was to develop technology to reduce
design cycle time, and time-to-market by intelli-
gently automating elements of large scaled distrib-
uted design processes in a linked, associative envi-
ronment. It is important to note that the goal of the
FIPER contract was to develop and demonstrate
technology, which differs from the commercial
FIPER software product developed and marketed by
ESI [2]. Any reference to FIPER in this manuscript
is to the work done under the FIPER contract and is
not directly related to the commercial software
product.
Turbine design problem starts with a preliminary de-
sign that uses 1-D analysis that is computationally
inexpensive and then progresses to 2-D and 3-D de-
sign. In the design process the computational com-
plexity of the analysis increases as the design ad-
vances along the process. The automation of the
design process is more useful when the computa-
tional effort is relatively much lower compared to
the manual effort. The paper focuses on preliminary
design of the turbines and presents the optimization
formulation as well as the application of the FIPER
architecture to the problem.
The rest of the paper is organized as follows: Sec-
tion 2 presents a review of the relevant literature.
Section 3 presents the FIPER architecture and sec-
tion 4 presents the turbine design problem formula-
tion and the application of the FIPER architecture to
the problem. Section 5 presents the performance re-
sults of the distributed computing model. This is fol-
lowed by some concluding remarks and plans for fu-
ture work.

2 LITERATURE REVIEW

Two streams of literature are relevant to this re-
search, namely, design automation tools and distrib-
uted systems. Design automation tools are typically
very efficient at automation of processes on individ-
ual nodes while scripts were being used sometimes
for remote execution of analysis codes. These scripts
for remote executions however are brittle with little
error correction and resilience built in. The distrib-
uted environments on the other hand are robust in
remote execution of analysis codes on the network.

Executing of engineering processes on a grid of
workstations requires attributes of both distributed
environments and automation environments. The lit-
erature review tries to bridge the gap between the
two different streams of work.
The design process automation requires automation
and integration of each individual task into the proc-
ess map that incorporates the loops, forks, and tran-
sitions of the process. The design of each component
usually does not have a closed form solution; an in-
dividual task involves repeated execution of an
analysis code in which alternate configurations of
the design are evaluated. Automation of these tasks
requires incorporation of optimization models that
drive the design to maximize (or minimize) a set of
objectives subject to the constraints of the problem.
The entire design process is then simulated by exe-
cuting the codes in sequences provided in the proc-
ess map and cascading outputs from one analysis
code to the next. Several attempts have been made in
the past to create a collaborative design environment
through the automation of tasks in the design proc-
ess, [3,5,6,9] and consequently reduce the design
cycle time and improve performance. These automa-
tion efforts, though robust at the individual task
level where the process is fairly standardized 4, are
very brittle at the process level. Brittleness here re-
fers to inflexibility and inability to adapt to changes.
The reason for brittleness at the process level is that
analysis codes, as well as the process, change and
render the couplings between tasks ineffective
thereby breaking the process map. The maintenance
burden of fixing broken links is onerous and makes
the automated processes inefficient in terms of the
maintenance cost versus productivity gains. In addi-
tion, these environments are focused
P2P communication needs to be clearly distin-
guished from the concept of distributed computing
that involves breaking down a computationally large
task into several subtasks that are distributed over
several nodes of the network. The problem of coor-
dinating distributing computation across multiple
network nodes has also been investigated under the
rubric of parallel computing1 and meta-computing
(grid) systems. Grid computing organizes computa-
tional and data resources distributed across a net-
work to make computationally intensive problems
feasible to solve. Most of the distributed computing
systems are based on centralized coordination, how-
ever, some distributed computing systems based on

1 Traditionally, researchers and practitioners have called dis-
tributed resource sharing parallel computing; however, since
the mid-nineties, grid computing is more commonly used, es-
pecially as it relates to high performance distributed comput-
ing.

114

P2P architecture are beginning to emerge. One nota-
ble application is Seti@home [7], which shares
processing load across distributed nodes. The appli-
cation divides processing into small chunks and dis-
tributes them to other nodes. The application reas-
sembles the results, which contribute to the overall
solution. The application builds resilience by giving
multiple nodes the same processing task and elimi-
nating specious or incongruous results. I-Way [8] is
another project that demonstrates the feasibility of
sharing distributed resources. In the I-Way project,
multiple super computers process multiple applica-
tions and communicate over high-bandwidth ATM
networks reducing execution time for complex
analysis.
Grid computing poses a large number of challenges
at the network level, including scheduling, coordina-
tion of activities, access control, load balancing,
fault tolerance, and integration of heterogeneous
systems [13]. Researchers are just beginning to ex-
plore these issues as grid computing becomes more
prominent. Interestingly, grid-computing applica-
tions employ centralized scheduling (CS) architec-
tures. Generally, a central scheduler manages the
distribution of processing to network resources and
aggregates the processing results. These applica-
tions assume a tightly coupled network topology, ig-
noring the changing topology of a network. Load
sharing and job scheduling schemes have been stud-
ied extensively with formal performance evaluation
models [14,15]. Powerful grid computing toolkits,
such as Globus [16], Legion [17], Simgrid [18] and
Globe [19], which provide basic capabilities and in-
terfaces for communication, resource location,
scheduling, authentication, and security and primar-
ily use a CS architecture. Simpler systems, such as
GradSolve [11], Ninf [9], and NetSolve [12], which
are based on remote procedure calls (RPCs), also
use CS architecture.
The FIPER design environment bridges the gap be-
tween distributed environments and process automa-
tion tools, creating an environment that allows a
complex engineering process to be mapped to a net-
work grid. It is described in the next section.

3 FIPER ARCHITECTURE

FIPER is a service based distributed environment
based on the Jini Network Technology [26-28],
which supports a federation of services that collabo-
rate dynamically over a network. In Jini, a service is
essentially a Java interface that is implemented as a
remote object. Therefore, any object could be turned
into a service provider. It has a concept of dynamic
discovery of services where by services are regis-

tered on the network and discovered in real-time via
a unicast or multicast protocols on the network.
Jini provides a registry called lookup service (LUS),
which is a Jini service that allows service requestors
to locate needed services by object types (interfaces)
and associated attributes. During startup, a service
provider registers its services with the LUS. Clients
use the LUS to locate the services they are interested
in. The LUS itself is discovered through the discov-
ery protocols by issuing multicast or unicast re-
quests, as well as multicast announcements. Service
requestors and providers use the discovery protocols
to locate LUSs. In FIPER discovery of LUSs is
delegated to a specialized service provider called
cataloger that maintains a catalog of domain spe-
cific services from all available LUSs. Multiple cata-
logers are usually maintained on the network to par-
tition all services into dynamic application specific
groups across all running LUSs (aero, thermal, me-
chanical, analysis, etc.). When the services first en-
ter the grid they receive a lease from a LUS for a
specific time period which is renewed periodically
by their service provider. If the service gets disabled
then the lease is not renewed and the service is de-
registered from the LUS and thus leaves the net-
work. This mechanism of leasing keeps the grid
healthy and robust. New services entering the net-
work become available immediately via a cataloger
or directly from LUSs and the existing services that
are disabled are automatically disposed from the
grid.
FIPER allows a virtual mapping of an engineering
process on a grid of virtual services. This mapping is
defined by a service-oriented program in terms of
services, the data for each service, and the method to
be invoked on each associated service provider. A
service is represented by what is called a service
method. A service method is a reference to a remote
call. A service provider runs a set of remote methods
which are exposed to service requestors via a pro-
vider’s interface. Thus a service method is a pair (i,
s), where i is the name of the provider interface and
s is the name of method (selector). Service data that
is passed as an argument to the remote call is called
a service context. A service context [24-25] is a tree
like structure with leave nodes containing data and
tree paths providing the context namespace. A task
is an elementary grid operation that is defined by
data and a service method, i.e. task t = (c, m),
where m is the service method and c is the service
context. A compound exertion is called a job. It is an
aggregation of tasks and other jobs. The job defines
a virtual mapping of engineering process and also
encapsulates the execution and control strategy for
the job. A job j = (c, m) where m is a service

115

method and c is the service context in which, the
data nodes are the tasks and other jobs. The context
model for a job also encapsulates information re-
quired for defining the control strategy of the proc-
ess represented by the job. Tasks and jobs are in fact
grid programs, more precisely grid instructions and
programs respectively and are collectively called ex-
ertions.
All the engineering analysis codes are wrapped into
services and distributed on the network. A service
broker called a jobber finds the services that are
necessary to complete synchronously the entire
process defined by job. A jobber creates a federation
of services using a cataloger or finds them in dis-
covered LUSs by itself. These services complete the
process and disperse to join other federations in the
grid.
The third service broker in FIPER, as depicted in
Figure 1, is an exertion space. Alternatively, a ser-

vice requestor or jobber can use an exertion space
and simply drops the exertion (task or job) into the
shared object space. The exertion space in FIPER is
implemented with the JavaSpaces, a Jini service[28].
Each FIPER provider can look continuously into the
space for tasks that match the provider’s interfaces
and its attributes. The provider that picks up a
matched exertion from the object space returns the
exertion being asynchronously executed back into
the space. Then, the requestor that placed the exer-
tion picks the executed exertion up from the space.
The exertion space provides a kind of automatic load
balancing – the fastest available service provider
gets an exertion from the space. When a service pro-
vider gets its task then the task method is executed,
otherwise jobs are picked up and executed by job-
bers.

Figure 1: FIPER Layered Architecture: requestors, brokers, providers, provisioners

To illustrate a very flexible distributed control strat-
egy of FIPER service-oriented programs, let’s con-
sider the case presented in Figure 1. This control
strategy defines a virtual mapping of an engineering
process on a grid of virtual services. A service re-
questor R1 submits a job J1 to a jobber (the action
1). In that case R1 finds a jobber directly by itself
(discovery of LUSs and selecting the jobber). In the
case of R6, the jobber is found using a cataloger (ac-
tions a and b, but the cataloger is found directly by
R6). The control strategy is driven by the service
context associated with J1 as it is described above.
A service context of each job defines a control strat-
egy by four parameters as follows:

discovery method: delegated (cataloger) or self

coordination method: delegated (jobber) or self

dispatch method: synchronous (jobber) or
asynchronous (exertion space)

execution strategy: sequential or parallel

In Figure 1, the control strategy of the job J1 is de-
fined as follows:

i) discovery method: delegated (cataloger)
ii) coordination method: delegated (jobber)
iii) dispatch method: synchronous (jobber)
iv) execution strategy: parallel

The control strategy of the job J2 (the subexertion of
J1) is defined as follows:

v) discovery method: self
vi) coordination method: delegated (jobber)
vii)dispatch method: synchronous (jobber)
viii) execution strategy: parallel

116

Finally, the control strategy of the job J3 (the subex-
ertion of J2) is defined as follows:

ix) discovery method: self
x) coordination method: delegated (jobber)
xi) dispatch method: asynchronous (exertion

space)
xii)execution strategy: parallel

By ii) the action 1 is taken – the job J1 is submitted
to a jobber. By i) the action 2 is taken - the jobber
gets proxies to all needed services using the cata-
loger. The submitted (outer) job J1 by R1 is coordi-
nated by the jobber: actions 3, 4, 5 (executing tasks),
and 6 (executing the inner job J2 of J1). The pro-
vider P9 calls on P8 using the cataloger: actions 7
and 8. By v) and vi) the current jobber finds another
jobber (action 6) that coordinates execution of the
inner job J2. By viii) the job J2 is executed in paral-
lel - the inner job J3 of J2 is being executed by xi) -
the action 9; and 10, 11, 12 – tasks being executed
by providers P6, P5, and P4 correspondingly. By xi)
the job J3 is dropped into the exertion space (the ac-
tion 9) and by ix) x) and xii) is executed in parallel

by providers P3, P2, and P1 – actions 13, 14, and 15
correspondingly.

3.1 Turbine Aerodynamic Design Problem
Turbines are complex engineering systems that are
composed of several alternating rows of stationary
and rotating airfoils, which permit controlled expan-
sion of the hot gases from the combustor and gener-
ate power in the process. Design of a turbine in-
volves optimization of the individual rows of the
airfoils as well as the system configuration that
models dependencies between adjacent rows of air-
foils. To ensure its integrity a turbine must be evalu-
ated from several different perspectives including,
thermodynamics, aerodynamics, structural analysis,
and rotordynamics. The turbine aerodynamic design
problem does not have a closed form solution that
provides an optimum solution; rather, an analysis
code can be used to evaluate a specific configuration
of the turbine. The design process is thus an iterative
process in which several configurations of the tur-
bine are evaluated and the configuration with the
best overall performance is selected.

Parametric
Design

Pitchline
Performance

Prediction

Smooth Walls

Generate B.C.’s

Circumferential
Average Flow

Analysis

Initial Airfoils

Parametric
Geometry

Computational
Fluid Dynamics

(CFD)

Evaluate Section

Evaluate Stack

Generate
Planar

Sections

Generate
Mesh

ANSYS

Pitchline Throughflow Blade-to-Blade Mechanical

Optimize

Converge

Cycle

Thermodynamic
Cycle Selection

Cycle Point
Studies

Parametric
Design

Pitchline
Performance

Prediction

Smooth Walls

Generate B.C.’s

Circumferential
Average Flow

Analysis

Initial Airfoils

Parametric
Geometry

Computational
Fluid Dynamics

(CFD)

Evaluate Section

Evaluate Stack

Generate
Planar

Sections

Generate
Mesh

ANSYS

Pitchline Throughflow Blade-to-Blade Mechanical

Optimize

Converge

Cycle

Thermodynamic
Cycle Selection

Cycle Point
Studies

Figure 2: Turbine aerodynamic design process

As shown in Figure 2 the design proceeds in several
phases and the computational complexity of the
analysis codes increases progressively as it advances
to the later phases. In the initial phases, a broad
range of the search space is covered and the search
space is progressively narrowed as the design ad-
vances and the analysis gets more computationally
intense. The design process starts (Cycle) with the
thermodynamic cycle analysis of the aircraft engine
to determine the flow conditions at the interfaces be-
tween the different components (compressor, com-
bustor, turbine etc.). Step 0 indicates the 0-D (0-
Dimensional) fidelity of the analysis. The complete
engine is modeled as a thermodynamic cycle and the
performance of the engine is evaluated at different
points in the flight regime of the aircraft engine. The

different flight points, also called as cycle points can
be ground idle, take-off, cruise, landing, etc. The
turbine is usually designed for maximum or best per-
formance at a particular cycle point, called the de-
sign cycle point and is required to meet the mini-
mum performance criteria at all other cycle points,
also called as off-design. Step 1 is the preliminary
design in which a one-dimensional (1-D) analysis
code based on empirical data is used to analyze all
the turbine stages simultaneously in order to predict
the pitchline performance. This phase plays a cru-
cial role in narrowing down the search space and re-
ducing the computational burden in the downstream
phases. During the preliminary design the macro
parameters of the turbine, such as the number of air-
foils in each row, geometry and configuration of the

117

airfoils, as well as the basic shape of the turbine
flowpath are determined. In later phases, the focus
shifts to the design of individual airfoils where 2-
d/3-d computational fluid dynamics codes are used
to optimize the airfoil geometry by minimizing fric-
tion and leakage losses.

3.2 Turbine Preliminary Design
Turbine preliminary design involves design of the
shape of the gas path as well as the configuration of
each blade row in the turbine. The turbine consists
of rows of alternating blades and vanes, thus, the
parameterization of the turbine is typically done
based on each stage. The parametric representation

of the turbine consists of the blade solidity, reaction,
work extraction, inner and outer diameter, axial
width of the blade row. This parametric representa-
tion is evaluated using a 1-D analysis code that is
based on an empirical model and validated using
turbine test data. This code models the performance
of each of the blade rows and also the interactions
between adjacent blade rows. The performance of
the turbine is evaluated at multiple thermodynamic
cycle points. The goal is to map the performance of
the turbine over the entire design space and identify
the critical areas of the design wherein the turbine
meets all the design criteria and maximizes perform-
ance.

Figure 3: Turbine flowpath calculations

Figure 3 shows a typical velocity triangle based cal-
culation that is performed during a 1-D aerodynamic
analysis. In this particular application a GE proprie-
tary code is used to perform the 1-D analysis. The
1-D code is wrapped as a service and and whenever
it gets published to the network, it is available for
service requestors to be able to execute the specific
tasks in a particular job. Each service provider is
identified by a unique interface and a unique pro-
vider name and the service requestor can select indi-
vidual service providers based on these attributes.
In addition to this, each provider can perform more
than one service and depending on the type and
number of inputs specified, the provider can intelli-
gently determine the specific service that is re-
quested.

4 RESULTS

A specific aspect of the Turbine Aerodynamic Pre-
liminary Design process is defined as a job and exe-
cuted using the FIPER framework. The 1-D aero-
dynamic code is exposed as a FIPER service. The
specific example that is chosen requires evaluating
the turbine 1-D performance over 20 different ther-
modynamic cycle points so that the designer can
then narrow down the design space to a region that
maximizes performance while meeting all the other
design constraints. Figure 4 shows the turbine per-
formance map for the 20 thermodynamic cycle
points. The Case IDs are plotted on the X-axis and
the performance parameter is plotted along the Y-
axis. Actual names of performance parameters have
been substituted by numbers to protect the proprie-
tary information at General Electric.

118

Figure 4: Turbine performance map

To obtain these results, the 1-D analysis code has to
be executed 20 times and the output from the analy-
sis has to be post-processed to extract the necessary
performance parameter. For a typical turbine de-
sign, hundreds of such analyses are executed in or-
der to accurately map the entire design. The process
is typically performed sequentially, resulting in a

very time consuming process. The strength of a dis-
tributed environment lies in the ability to perform
such operations in a parallel environment. The 20
analyses were defined as 20 individual jobs and
were spawned to different number of service provid-
ers and data was collected on the time it takes for all
20 jobs to complete.

Figure 5: Execution time for different number of service providers

Figure 5 shows the data collected when the 20 jobs
are all run on 1, 5, 10, 15 and 20 service providers.
The actual execution time is plotted as red-colored
points and a trend line is also plotted to indicate the
trend. In the case where more than one job is sent to
a particular service provider, the first job has to exe-
cute first before the next job can be executed. The
execution time for the different cases is normalized
with the execution time for the case with one 1-D

service provider. One can observe the liner trend in
the execution time going from 1 to 20 providers.
There is an almost 90% reduction in the time it takes
to execute 20 jobs using a single service provider as
compared to using 20 service providers. The minor
variation from a strictly linear trend is due to the
network traffic at the time of execution and due to
network latency during the process of provider
lookup and discovery.

119

5 CONCLUSIONS

Use of a distributed service based environment re-
duces the throughput of the design process via paral-
lel execution of analyses over the network. The
process scales almost linearly as more and more ser-
vices are added to the network. Since the architec-
ture uses a dynamic service discovery mechanism
allowing new services to enter the network and dis-
abled services to leave the network with need for re-
configuration. This allows the process to be distrib-
uted without sacrificing the robustness of the
process. This architecture also improves the utiliza-
tion of the network resources by distributing the
execution load over multiple nodes of the network.

6 REFERENCES

1. Federated Intelligent Product EnviRonment, Techni-
cal Proposal, Ohio Aerospace Institute, General Elec-
tric Company, BFGoodrich, Parker Hannifin, Engine-
ous Software, Ohio University, April 1999.

2. Engineous Software Incorporated,
http://www.engineous.com/index.htm

3. S. Goel, D. Cherry and B. Gregory, Knowledge-Based
System for Preliminary Aerodynamic Design of Air-
craft Engine Turbines, Applications of Artificial Intel-
ligence XI: Knowledge-Based Systems in Aerospace
and Industry, (Orlando, Florida, April 1993).

4. S. Goel, J.I. Cofer and H. Singh, Turbine Airfoil De-
sign Optimization, International Gas Turbine and
Aeroengine Congress and Exposition, (Birmingham,
UK, June 10-13, 1996).

5. M.A. Kolb and M.W. Bailey, FRODO: Constraint-
Based Object-Modeling for Preliminary Design, Ad-
vances in Design Automation, (1993) 307-318.

6. A. Takefusa, S. Matsuoka, H. Ogawa, H. Nakada, H.
Takagi, M. Sato, S. Sekiguchi and U. Nagashima,
Multi-client Performance Analysis of High-
Performance Global Computing, Proceedings of the
1997 ACM/IEEE Supercomputing Conference (1997).

7. David P. Anderson, Jeff Cobb, Eric Korpela, Matt Le-
bofsky, Dan Werthimer, SETI@home: An Experi-
ment in Public-Resource Computing, (Space Sciences
Laboratory, U.C. Berkeley, 2002).

8. T. DeFanti, I. Foster, M. Papka, R. Stevens and T.
Kuhfuss, Overview of the I-Way: Wide area visual
supercomputing, International Journal of Supercom-
puting Applications and High Performance Comput-
ing, 10 (2) (1996) 123–131.

9. A. Takefusa, S. Matsuoka, H. Ogawa, H. Nakada, H.
Takagi, M. Sato, S. Sekiguchi and U. Nagashima,
Multi-client Performance Analysis of High-
Performance Global Computing, Proceedings of the
1997 ACM/IEEE Supercomputing Conference (1997).

10. S.S. Tong, D.J. Powell, and S. Goel, Integration of
Artificial Intelligence and Numerical Optimization
Techniques for the Design of Complex Aerospace
Systems, 1992 Aerospace Design Conference, (Irvine,
CA, February 1992), AIAA-92-1189.

11. S. Vadhiyar and J. Dongarra, GrADSolve - A Grid-
based RPC system for Remote Invocation of Parallel
Software, Journal of Parallel and Distributed Comput-
ing, (2003).

12. H. Casanova and J. Dongarra, NetSolve: A network-
enabled server for solving computational science
problems, The International Journal of Supercomputer
Applications and High Performance Computing, 11(3)
(1997) 212-223.

13. W. Johnston, D. Gannon, and B. Nitzberg, Grids as
production computing environments: The engineering
aspects of NASA’s information power grid, Proc.
Eighth IEEE International Symposium on High Per-
formance Distributed Computing, (1999).

14. D. Ingram, Soft Real Time Scheduling for General
Purpose Client-Server Systems, Proc. of the 7th Work-
shop on Hot Topics in Operating Systems, (1999).

15. K. Aida, A. Takefusa, H. Nakada,S. Matsuoka, S.
Sekiguchi and U. Nagashima, Performance evaluation
model for scheduling in a global computing system,
The International Journal of High Performance Com-
puting Applications, 14, No. 3 (2000).

16. I. Foster and C. Kesselman, Globus: A Metacomput-
ing Infrastructure Toolkit, The International Journal of
Supercomputer Applications and High Performance
Computing, 11 (2) (1997) 115–128.

17. M.A. Natrajan, Humphrey and A.S. Grimshaw, Grids:
Harnessing geographically-separated resources in a
multi-organisational context, 15th Annual International
Symposium on High Performance Computing Sys-
tems and Applications (2001).

18. H. Casanova, Simgrid: A Toolkit for the Simulation
of Application Scheduling, Proceedings of the First
IEEE/ACM International Symposium on Cluster
Computing and the Grid, (Brisbane, Australia, 2001).

19. M. Van Steen, P. Homburg and A. Tanenbaum,
Globe: A wide-area distributed system, IEEE Concur-
rency, 7(1) (1999) 70–78.
http://www.cs.vu.nl/˜steen/globe/.

20. Kolonay, R., Sobolewski, M., 2004, Grid Interactive
Service-oriented Programming Environment, Concur-
rent Engineering: The Worldwide Engineering Grid,
Tsinghua Press and Springer Verlag, ISBN 7-302-
08802-0, pp. 97-102.

21. Soorianarayanan, S., Sobolewski, M., 2004, Monitor-
ing Federated Services in CE, Concurrent Engineer-
ing: The Worldwide Engineering Grid, Tsinghua
Press and Springer Verlag, ISBN 7-302-08802-0, pp.
89-95.

22. Sobolewski M., Soorianarayanan S, Malladi-Venkata
R-K., 2003, Service-Oriented File Sharing, Proceed-
ings of the IASTED Intl., Conference on Communica-
tions,Internet, and Information technology, pp. 633-
639, Nov 17-19, 2003, Scottsdale, AZ.

23. Lapinski M., Sobolewski M., 2002, Managing Notifi-
cations in a Federated S2S Environment, International
Journal of Concurrent Engineering: Research & Ap-
plications, Dec 2002.

24. Sobolewski, 2002. Federated P2P Services in CE En-
vironments, Advances in Concurrent Engineering,
A.A. Balkema Publishers, 2002, ISBN 90 5809 502 9,
pp. 13-22.

25. Zhao, Shuo, and Michael Sobolewski, 2001, Context
Model Sharing in the FIPER Environment, Proc. of
the 8th Int. Conference on Concurrent Engineering:
Research and Applications, Anaheim, CA.

26. Edwards, W.K. (2000). Core Jini, 2nd ed., Pren-tice
Hall, ISBN: 0-13-089408.

27. Jini Architecture Specification. Available at URL:
http://www.sun.com/jini/specs/jini1_1.pdf.

28. Freeman, E., Hopfer, S., & Arnold, K.(1999), Javas-
paces™ Principles, Patterns, and Practice, Addison-
Wesley, ISBN: 0-201-30955-6

120

