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ABSTRACT: This paper presents an application of a distributed service-oriented architecture (FIPER) to the 
preliminary design of gas turbine. In this application, a one-dimensional analysis code is wrapped into an in-
terface to create a network service. Several of these services are distributed across a grid of workstations. The 
FIPER architecture uses a service catalog that registers all the services that are started on the network. These 
services are then discovered in real time and used by the design process. This architecture is used to simulate 
the turbine configuration optimization process that requires repeated evaluations of the analysis code. The pa-
per presents the scaling results when different number of services is started on the network 

1 INRODUCTION

Design of engineering systems such as gas turbines 
involve a complex process with multiple steps and 
several feedback loops. The design entails an inter-
action between several engineering disciplines, such 
as, heat transfer, aerodynamics, and structural analy-
sis. The objective of the design is to satisfy the prob-
lem constraints and to maximize the performance of 
the design. Different metrics of performance are 
used for different types of design, for instance, in a 
power-generation turbine the objective is to maxi-
mize the fuel efficiency and in a fighter-engine tur-
bine the objective would be to get maximum thrust. 
Such designs do not have a closed form solution, 
however, analysis codes that can numerically com-
pute the performance of specific design configura-
tions are available. The design thus involves alter-
nate configurations of the design from which the 
best design that maximizes the performance of the 
design is selected. Designers often use expert judg-
ments based upon prior experience to select alternate 
configurations of the design. Designers are able to 
quickly narrow down the search space however this 
is a labor-intensive activity that requires expertise of 
skilled designers that are not easily available. 
There is thus a strong incentive to automate these 
processes using integration environments that can 
capture the designer intelligence. While automating 
the design process, the problem is posed as an opti-
mization problem and the analysis code is iteratively 
executed where an optimization algorithm deter-

mines the alternate configurations. These automa-
tions have the advantage of faster execution speeds, 
however, they perform poorly in decision-making 
compared to skilled designers. The automated de-
sign processes thus require a relatively larger num-
ber of iterations to determine the solution. The opti-
mization is typically executed on a single node 
where the design iterations are sequentially run. Al-
though each analysis executes relatively quickly a 
computational bottleneck is created, as a large num-
ber of analysis runs are required especially when us-
ing stochastic optimization technique such as genetic 
algorithms for driving the optimization.  
Use of distributed computing alleviates the computa-
tional bottleneck by rapidly evaluating multiple con-
figurations simultaneously on multiple nodes. Use of 
distributed environments is typically plagued with 
high maintenance cost and low reliability primarily 
due to lack of network reliability. Use of a service-
based distributed architecture reduces the mainte-
nance overhead, adds robustness to the distributed 
architecture, and improves the resource utilization of 
the network resources. In addition, a service-based 
architecture fosters a dynamic mapping of analysis 
codes into the design process allowing the processes 
to evolve without jeopardizing the automation of the 
processes.
This paper presents the application of FIPER, a ser-
vice-based architecture developed for distributed 
computing in an engineering environment, to solve 
the turbine design problem.  The work presented in 
this paper utilizes the architecture developed at the 
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General Electric Company under the National Insti-
tute of Standards and Technology Advanced Tech-
nology Program (NIST-ATP) Federated Intelligent 
Product EnviRonment (FIPER) contract [1]. The 
FIPER contract was a four year (1999-2003), $21.5 
million NIST-ATP project that teamed General 
Electric with Engineous Software Incorporated 
(ESI), Goodrich, Parker Hannifin, Ohio Aerospace 
Institute, and Ohio University. The goal of the 
FIPER contract was to develop technology to reduce 
design cycle time, and time-to-market by intelli-
gently automating elements of large scaled distrib-
uted design processes in a linked, associative envi-
ronment. It is important to note that the goal of the 
FIPER contract was to develop and demonstrate 
technology, which differs from the commercial 
FIPER software product developed and marketed by 
ESI [2]. Any reference to FIPER in this manuscript 
is to the work done under the FIPER contract and is 
not directly related to the commercial software 
product.
Turbine design problem starts with a preliminary de-
sign that uses 1-D analysis that is computationally 
inexpensive and then progresses to 2-D and 3-D de-
sign. In the design process the computational com-
plexity of the analysis increases as the design ad-
vances along the process. The automation of the 
design process is more useful when the computa-
tional effort is relatively much lower compared to 
the manual effort. The paper focuses on preliminary 
design of the turbines and presents the optimization 
formulation as well as the application of the FIPER 
architecture to the problem. 
The rest of the paper is organized as follows: Sec-
tion 2 presents a review of the relevant literature. 
Section 3 presents the FIPER architecture and sec-
tion 4 presents the turbine design problem formula-
tion and the application of the FIPER architecture to 
the problem. Section 5 presents the performance re-
sults of the distributed computing model. This is fol-
lowed by some concluding remarks and plans for fu-
ture work. 

2 LITERATURE REVIEW 

Two streams of literature are relevant to this re-
search, namely, design automation tools and distrib-
uted systems.  Design automation tools are typically 
very efficient at automation of processes on individ-
ual nodes while scripts were being used sometimes 
for remote execution of analysis codes. These scripts 
for remote executions however are brittle with little 
error correction and resilience built in. The distrib-
uted environments on the other hand are robust in 
remote execution of analysis codes on the network. 

Executing of engineering processes on a grid of 
workstations requires attributes of both distributed 
environments and automation environments. The lit-
erature review tries to bridge the gap between the 
two different streams of work.  
The design process automation requires automation 
and integration of each individual task into the proc-
ess map that incorporates the loops, forks, and tran-
sitions of the process. The design of each component 
usually does not have a closed form solution; an in-
dividual task involves repeated execution of an 
analysis code in which alternate configurations of 
the design are evaluated. Automation of these tasks 
requires incorporation of optimization models that 
drive the design to maximize (or minimize) a set of 
objectives subject to the constraints of the problem. 
The entire design process is then simulated by exe-
cuting the codes in sequences provided in the proc-
ess map and cascading outputs from one analysis 
code to the next. Several attempts have been made in 
the past to create a collaborative design environment 
through the automation of tasks in the design proc-
ess, [3,5,6,9] and consequently reduce the design 
cycle time and improve performance. These automa-
tion efforts, though robust at the individual task 
level where the process is fairly standardized 4, are 
very brittle at the process level. Brittleness here re-
fers to inflexibility and inability to adapt to changes. 
The reason for brittleness at the process level is that 
analysis codes, as well as the process, change and 
render the couplings between tasks ineffective 
thereby breaking the process map. The maintenance 
burden of fixing broken links is onerous and makes 
the automated processes inefficient in terms of the 
maintenance cost versus productivity gains. In addi-
tion, these environments are focused  
P2P communication needs to be clearly distin-
guished from the concept of distributed computing 
that involves breaking down a computationally large 
task into several subtasks that are distributed over 
several nodes of the network. The problem of coor-
dinating distributing computation across multiple 
network nodes has also been investigated under the 
rubric of parallel computing1 and meta-computing 
(grid) systems.  Grid computing organizes computa-
tional and data resources distributed across a net-
work to make computationally intensive problems 
feasible to solve.  Most of the distributed computing 
systems are based on centralized coordination, how-
ever, some distributed computing systems based on 

1 Traditionally, researchers and practitioners have called dis-
tributed resource sharing parallel computing; however, since 
the mid-nineties, grid computing is more commonly used, es-
pecially as it relates to high performance distributed comput-
ing.
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P2P architecture are beginning to emerge. One nota-
ble application is Seti@home [7], which shares 
processing load across distributed nodes.  The appli-
cation divides processing into small chunks and dis-
tributes them to other nodes.  The application reas-
sembles the results, which contribute to the overall 
solution.  The application builds resilience by giving 
multiple nodes the same processing task and elimi-
nating specious or incongruous results.  I-Way [8] is 
another project that demonstrates the feasibility of 
sharing distributed resources. In the I-Way project, 
multiple super computers process multiple applica-
tions and communicate over high-bandwidth ATM 
networks reducing execution time for complex 
analysis.
Grid computing poses a large number of challenges 
at the network level, including scheduling, coordina-
tion of activities, access control, load balancing, 
fault tolerance, and integration of heterogeneous 
systems [13].  Researchers are just beginning to ex-
plore these issues as grid computing becomes more 
prominent.  Interestingly, grid-computing applica-
tions employ centralized scheduling (CS) architec-
tures. Generally, a central scheduler manages the 
distribution of processing to network resources and 
aggregates the processing results.  These applica-
tions assume a tightly coupled network topology, ig-
noring the changing topology of a network.  Load 
sharing and job scheduling schemes have been stud-
ied extensively with formal performance evaluation 
models [14,15].  Powerful grid computing toolkits, 
such as Globus [16], Legion [17], Simgrid [18] and 
Globe [19], which provide basic capabilities and in-
terfaces for communication, resource location, 
scheduling, authentication, and security and primar-
ily use a CS architecture. Simpler systems, such as 
GradSolve [11], Ninf [9], and NetSolve [12], which 
are based on remote procedure calls (RPCs), also 
use CS architecture.  
The FIPER design environment bridges the gap be-
tween distributed environments and process automa-
tion tools, creating an environment that allows a 
complex engineering process to be mapped to a net-
work grid. It is described in the next section.

3 FIPER ARCHITECTURE 

FIPER is a service based distributed environment 
based on the Jini Network Technology [26-28], 
which supports a federation of services that collabo-
rate dynamically over a network. In Jini, a service is 
essentially a Java interface that is implemented as a 
remote object. Therefore, any object could be turned 
into a service provider. It has a concept of dynamic 
discovery of services where by services are regis-

tered on the network and discovered in real-time via 
a unicast or multicast protocols on the network.
Jini provides a registry called lookup service (LUS), 
which is a Jini service that allows service requestors 
to locate needed services by object types (interfaces) 
and associated attributes. During startup, a service 
provider registers its services with the LUS.  Clients 
use the LUS to locate the services they are interested 
in. The LUS itself is discovered through the discov-
ery protocols by issuing multicast or unicast re-
quests, as well as multicast announcements. Service 
requestors and providers use the discovery protocols 
to locate LUSs. In FIPER discovery of LUSs is 
delegated to a specialized service provider called 
cataloger that maintains a catalog of domain spe-
cific services from all available LUSs. Multiple cata-
logers are usually maintained on the network to par-
tition all services into dynamic application specific 
groups across all running LUSs (aero, thermal, me-
chanical, analysis, etc.). When the services first en-
ter the grid they receive a lease from a LUS for a 
specific time period which is renewed periodically 
by their service provider. If the service gets disabled 
then the lease is not renewed and the service is de-
registered from the LUS and thus leaves the net-
work. This mechanism of leasing keeps the grid 
healthy and robust. New services entering the net-
work become available immediately via a cataloger 
or directly from LUSs and the existing services that 
are disabled are automatically disposed from the 
grid.
FIPER allows a virtual mapping of an engineering 
process on a grid of virtual services. This mapping is 
defined by a service-oriented program in terms of 
services, the data for each service, and the method to 
be invoked on each associated service provider. A 
service is represented by what is called a service 
method. A service method is a reference to a remote 
call. A service provider runs a set of remote methods 
which are exposed to service requestors via a pro-
vider’s interface. Thus a service method is a pair (i,
s), where i  is the name of the provider interface and  
s  is the name of method (selector). Service data that 
is passed as an argument to the remote call is called 
a service context. A service context [24-25] is a tree 
like structure with leave nodes containing data and 
tree paths providing the context namespace. A task
is an elementary grid operation that is defined by 
data and a service method, i.e. task  t = (c, m),
where m  is the service method and  c  is the service 
context. A compound exertion is called a job. It is an 
aggregation of tasks and other jobs. The job defines 
a virtual mapping of engineering process and also 
encapsulates the execution and control strategy for 
the job. A job  j = (c, m) where m  is a service 
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method and  c  is the service context in which, the 
data nodes are the tasks and other jobs. The context 
model for a job also encapsulates information re-
quired for defining the control strategy of the proc-
ess represented by the job. Tasks and jobs are in fact 
grid programs, more precisely grid instructions and 
programs respectively and are collectively called ex-
ertions.
All the engineering analysis codes are wrapped into 
services and distributed on the network. A service 
broker called a jobber finds the services that are 
necessary to complete synchronously the entire 
process defined by job. A jobber creates a federation 
of services using a cataloger or finds them in dis-
covered LUSs by itself.  These services complete the 
process and disperse to join other federations in the 
grid.
The third service broker in FIPER, as depicted in 
Figure 1, is an exertion space. Alternatively, a ser-

vice requestor or jobber can use an exertion space 
and simply drops the exertion (task or job) into the 
shared object space. The exertion space in FIPER is 
implemented with the JavaSpaces, a Jini service[28]. 
Each FIPER provider can look continuously into the 
space for tasks that match the provider’s interfaces 
and its attributes. The provider that picks up a 
matched exertion from the object space returns the 
exertion being asynchronously executed back into 
the space. Then, the requestor that placed the exer-
tion picks the executed exertion up from the space. 
The exertion space provides a kind of automatic load 
balancing – the fastest available service provider 
gets an exertion from the space. When a service pro-
vider gets its task then the task method is executed, 
otherwise jobs are picked up and executed by job-
bers.

Figure 1: FIPER Layered Architecture: requestors, brokers, providers, provisioners 

To illustrate a very flexible distributed control strat-
egy of FIPER service-oriented programs, let’s con-
sider the case presented in Figure 1. This control 
strategy defines a virtual mapping of an engineering 
process on a grid of virtual services. A service re-
questor R1 submits a job J1 to a jobber (the action 
1). In that case R1 finds a jobber directly by itself 
(discovery of LUSs and selecting the jobber). In the 
case of R6, the jobber is found using a cataloger (ac-
tions a and b, but the cataloger is found directly by 
R6). The control strategy is driven by the service 
context associated with J1 as it is described above. 
A service context of each job defines a control strat-
egy by four parameters as follows: 

discovery method: delegated (cataloger) or self 

coordination method: delegated (jobber) or self 

dispatch method: synchronous (jobber) or 
asynchronous (exertion space) 

execution strategy: sequential or parallel 

In Figure 1, the control strategy of the job J1 is de-
fined as follows: 

i) discovery method: delegated (cataloger) 
ii) coordination method: delegated (jobber) 
iii) dispatch method: synchronous (jobber) 
iv) execution strategy: parallel 

The control strategy of the job J2 (the subexertion of 
J1) is defined as follows: 

v) discovery method: self 
vi) coordination method: delegated (jobber) 
vii)dispatch method: synchronous (jobber) 
viii) execution strategy: parallel
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Finally, the control strategy of the job J3 (the subex-
ertion of J2) is defined as follows: 

ix) discovery method: self 
x) coordination method: delegated (jobber) 
xi) dispatch method: asynchronous (exertion 

space)
xii)execution strategy: parallel 

By ii) the action 1 is taken – the job J1 is submitted 
to a jobber. By i) the action 2 is taken - the jobber 
gets proxies to all needed services using the cata-
loger. The submitted (outer) job J1 by R1 is coordi-
nated by the jobber: actions 3, 4, 5 (executing tasks), 
and 6 (executing the inner job J2 of J1). The pro-
vider P9 calls on P8 using the cataloger: actions 7 
and 8. By v) and vi) the current jobber finds another 
jobber (action 6) that coordinates execution of the 
inner job J2. By viii) the job J2 is executed in paral-
lel - the inner job J3 of J2 is being executed by xi) - 
the action 9; and 10, 11, 12 – tasks being executed 
by providers P6, P5, and P4 correspondingly. By xi) 
the job J3 is dropped into the exertion space (the ac-
tion 9) and by ix) x) and xii) is executed in parallel 

by providers P3, P2, and P1 – actions 13, 14, and 15 
correspondingly.

3.1 Turbine Aerodynamic Design Problem
Turbines are complex engineering systems that are 
composed of several alternating rows of stationary 
and rotating airfoils, which permit controlled expan-
sion of the hot gases from the combustor and gener-
ate power in the process. Design of a turbine in-
volves optimization of the individual rows of the 
airfoils as well as the system configuration that 
models dependencies between adjacent rows of air-
foils. To ensure its integrity a turbine must be evalu-
ated from several different perspectives including, 
thermodynamics, aerodynamics, structural analysis, 
and rotordynamics. The turbine aerodynamic design 
problem does not have a closed form solution that 
provides an optimum solution; rather, an analysis 
code can be used to evaluate a specific configuration 
of the turbine. The design process is thus an iterative 
process in which several configurations of the tur-
bine are evaluated and the configuration with the 
best overall performance is selected.  
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Figure 2: Turbine aerodynamic design process 

As shown in Figure 2 the design proceeds in several 
phases and the computational complexity of the 
analysis codes increases progressively as it advances 
to the later phases. In the initial phases, a broad 
range of the search space is covered and the search 
space is progressively narrowed as the design ad-
vances and the analysis gets more computationally 
intense.  The design process starts (Cycle) with the 
thermodynamic cycle analysis of the aircraft engine 
to determine the flow conditions at the interfaces be-
tween the different components (compressor, com-
bustor, turbine etc.).  Step 0 indicates the 0-D (0-
Dimensional) fidelity of the analysis. The complete 
engine is modeled as a thermodynamic cycle and the 
performance of the engine is evaluated at different 
points in the flight regime of the aircraft engine. The 

different flight points, also called as cycle points can 
be ground idle, take-off, cruise, landing, etc. The 
turbine is usually designed for maximum or best per-
formance at a particular cycle point, called the de-
sign cycle point and is required to meet the mini-
mum performance criteria at all other cycle points, 
also called as off-design. Step 1 is the preliminary 
design in which a one-dimensional (1-D) analysis 
code based on empirical data is used to analyze all 
the turbine stages simultaneously in order to predict 
the pitchline performance.  This phase plays a cru-
cial role in narrowing down the search space and re-
ducing the computational burden in the downstream 
phases.  During the preliminary design the macro 
parameters of the turbine, such as the number of air-
foils in each row, geometry and configuration of the 
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airfoils, as well as the basic shape of the turbine 
flowpath are determined. In later phases, the focus 
shifts to the design of individual airfoils where 2-
d/3-d computational fluid dynamics codes are used 
to optimize the airfoil geometry by minimizing fric-
tion and leakage losses.

3.2 Turbine Preliminary Design 
Turbine preliminary design involves design of the 
shape of the gas path as well as the configuration of 
each blade row in the turbine.  The turbine consists 
of rows of alternating blades and vanes, thus, the 
parameterization of the turbine is typically done 
based on each stage.  The parametric representation 

of the turbine consists of the blade solidity, reaction, 
work extraction, inner and outer diameter, axial 
width of the blade row. This parametric representa-
tion is evaluated using a 1-D analysis code that is 
based on an empirical model and validated using 
turbine test data. This code models the performance 
of each of the blade rows and also the interactions 
between adjacent blade rows.  The performance of 
the turbine is evaluated at multiple thermodynamic 
cycle points.  The goal is to map the performance of 
the turbine over the entire design space and identify 
the critical areas of the design wherein the turbine 
meets all the design criteria and maximizes perform-
ance.

Figure 3: Turbine flowpath calculations 

Figure 3 shows a typical velocity triangle based cal-
culation that is performed during a 1-D aerodynamic 
analysis.  In this particular application a GE proprie-
tary code is used to perform the 1-D analysis.  The 
1-D code is wrapped as a service and and whenever 
it gets published to the network, it is available for 
service requestors to be able to execute the specific 
tasks in a particular job.  Each service provider is 
identified by a unique interface and a unique pro-
vider name and the service requestor can select indi-
vidual service providers based on these attributes.  
In addition to this, each provider can perform more 
than one service and depending on the type and 
number of inputs specified, the provider can intelli-
gently determine the specific service that is re-
quested.

4 RESULTS  

A specific aspect of the Turbine Aerodynamic Pre-
liminary Design process is defined as a job and exe-
cuted using the FIPER framework.  The 1-D aero-
dynamic code is exposed as a FIPER service.  The 
specific example that is chosen requires evaluating 
the turbine 1-D performance over 20 different ther-
modynamic cycle points so that the designer can 
then narrow down the design space to a region that 
maximizes performance while meeting all the other 
design constraints.  Figure 4 shows the turbine per-
formance map for the 20 thermodynamic cycle 
points.  The Case IDs are plotted on the X-axis and 
the performance parameter is plotted along the Y-
axis.  Actual names of performance parameters have 
been substituted by numbers to protect the proprie-
tary information at General Electric. 
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Figure 4: Turbine performance map 

To obtain these results, the 1-D analysis code has to 
be executed 20 times and the output from the analy-
sis has to be post-processed to extract the necessary 
performance parameter.  For a typical turbine de-
sign, hundreds of such analyses are executed in or-
der to accurately map the entire design.  The process 
is typically performed sequentially, resulting in a 

very time consuming process.  The strength of a dis-
tributed environment lies in the ability to perform 
such operations in a parallel environment.  The 20 
analyses were defined as 20 individual jobs and 
were spawned to different number of service provid-
ers and data was collected on the time it takes for all 
20 jobs to complete.

Figure 5: Execution time for different number of service providers 

Figure 5 shows the data collected when the 20 jobs 
are all run on 1, 5, 10, 15 and 20 service providers.  
The actual execution time is plotted as red-colored 
points and a trend line is also plotted to indicate the 
trend.  In the case where more than one job is sent to 
a particular service provider, the first job has to exe-
cute first before the next job can be executed.  The 
execution time for the different cases is normalized 
with the execution time for the case with one 1-D 

service provider.  One can observe the liner trend in 
the execution time going from 1 to 20 providers.  
There is an almost 90% reduction in the time it takes 
to execute 20 jobs using a single service provider as 
compared to using 20 service providers.  The minor 
variation from a strictly linear trend is due to the 
network traffic at the time of execution and due to 
network latency during the process of provider 
lookup and discovery. 
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5 CONCLUSIONS 

Use of a distributed service based environment re-
duces the throughput of the design process via paral-
lel execution of analyses over the network. The 
process scales almost linearly as more and more ser-
vices are added to the network. Since the architec-
ture uses a dynamic service discovery mechanism 
allowing new services to enter the network and dis-
abled services to leave the network with need for re-
configuration. This allows the process to be distrib-
uted without sacrificing the robustness of the 
process. This architecture also improves the utiliza-
tion of the network resources by distributing the 
execution load over multiple nodes of the network.  
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