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Grids can be classified as computational grids, access grids and data grids. Computational grids address appli-
cations that deal with complex and time intensive computational problems, usually on relatively small datasets.
Access grids focus on group-to-group communication. Whereas data grids address the needs of applications that
deal with the evaluation and mining of large amounts of data in the terabyte and petabyte range. While SOR-
CER is a federated computation grid environment, a complementing data grid service called Replica Provider is
introduced. The newly developed data grid service is used and at the same time as the already existing SORCER
compute grid is leveraged for an increased functionality. SORCER service-oriented programs with replication
services now has the capability of running data grid applications. It enables better access to such databases and
increases reliability by replicating them at multiple locations. A federated grid environment with replication
service is presented. It enables large number of files to be replicated on multiple nodes over different heteroge-
neous computation platforms and provides generic service providers for fast, up-to-date, and reliable access to
file storage.

1 INTRODUCTION
Grid concepts are particularly relevant to concurrent
bioengineering and bioinformatics applications due
to the collaborative nature of such experiments and
the increasing complexity of data analysis tasks, and
hence illuminate a need for next-generation experi-
ments to exploit large distributed collections of shared
resources. Hence the trend towards the creation of so-
called bioinformatics Data Grids, i.e., grid infrastruc-
tures, tools, applications and service designed to en-
able concurrent and distributed access to, and analysis
of, large amounts of biological data. The broad sig-
nificance of grid concepts, in advanced scientific col-
laborations and in business, means that bioengineer-
ing and bioinformatics is just one of many research
domains that are contributing to and/or driving grid
technologies. The resulting interrelationships make it
important to understand the state of the art and likely
future directions in this field.

One example of these bioinformatics applications
is the Basic Local Alignment Search Tool (BLAST)
(Altschul et al. 1990). It is used to find string se-
quences in large DNA or protein databases. The size
of each of these sequence databases is very large
and growing exponentially. A data grid can help us
in easily and efficiently maintaining and updating
such large databases in a distributed computing en-
vironment. It also allows for faster access to such

databases and to increase reliability by replicating
these databases at multiple locations.

The SORCER environment (Sobolewski 2002a, b,
Kolonay & Sobolewski 2004, Soorianarayanan &
Sobolewski 2004, SORCER 2005) currently provides
a File Store Service (FSS) (Sobolewski et al. 2003). It
supports filtering out information from remote files,
thus reducing the amount of data transfers between
providers. Even though the File Store Service (FSS)
can be replicated like any other service in SORCER,
there is a scope of further improvement to make it
more scalable and reliable. Firstly, the FSS does not
replicate files among federating service. Therefore, if
one of the file store services crashes, all its files are
not available to participating services. Thus, a repli-
cation service that replicates files on multiple nodes
in the SORCER network is needed. Replication ser-
vices enhance the reliability of the file store service
and collaborating compute grid services. Hence, each
of the dedicated nodes has a copy of the file, and file
access time is reduced considerably.

2 PRINCIPLES OF FILE REPLICATION
The ultimate goal of file replication in a data grid is to
make a submitted file to a grid immediately available
on all dedicated nodes in exactly the same manner it
is available on the node it was introduced in. A file
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should be available in a reliable manner, even if a sin-
gle data node is off the network.

To achieve this goal data grids use file replication.
If a file is introduced into the data grid, it will be im-
mediately replicated among dedicated nodes. Thus, if
one of the nodes is disconnected from the network,
the file is still available from another replicated node.
Usually data is managed in two layers: the actual file
content, and metainformation about the content. The
metainformation layer for example contains informa-
tion about which file can be found where and in which
version.

The Globus Alliance (Globus Alliance 2005) pro-
vides several solutions for managing files in data
grids. The Globus toolkit (Chervenak et al. 2002)
provides a solution for high-performance data grids,
based on GridFTP and Replica Management Service
that are introduced in a Grid Data Management Pilot
(GDMP). (Singh et al. 2003). Also, it defines a meta-
catalog for describing files in replicated data grids.
(Samar et al. 2002). However, none of these solu-
tions fit exactly the requirements of service-to-service
(S2S) federated computing.

GridFTP is a data transfer and access protocol that
provide, efficient data transfer in Grid environments.
The GridFTP protocol extends the standard FTP pro-
tocol, providing a superset of the features offered by
the various Grid storage systems currently in use. The
GridFTP protocol was developed to satisfy the need
of Grid environment for fast, efficient and reliable
transport mechanism. GridFTP does not support se-
cure transport of data, it is concerned only with secure
login.

A Replica Catalog service was developed with the
goal to support replicated data wherein the details
of the physical host are removed from the file de-
scriptor. This Replica Catalog service also supports
striped data transfer and can provide metadata. The
Globus implementation of this service uses LDAP as
the database; however any database could be used in
general.

Replica Management Service (RMS) integrates
GridFTP and Replica Catalog into one system that
is transparent to the user to provide replica manage-
ment capabilities for data grids. The library provides
client functions that allow files to be registered with
the replica management service, published to replica
locations, and moved among multiple locations. The
library uses the Globus Replica Catalog and GridFTP
technologies to accomplish this work. However, RMS
still needs improvement for fault recovery, since the
Replica Catalog is a central server with a single point
of failure.

Certain shortcomings exist such as, until now, it
does not support automatic replication of data. Also,

the metadata is stored in one central database, the lo-
cation for which has to be known.

Therefore, the Replica Catalog service is a right
step towards distributed storage and is appropriate for
replication of large amount of data for read-only ac-
cess. However, write access is not supported.

3 FEDERATED FILE REPLICA MANAGEMENT
AND STORAGE

The goal of the grid environment with replication ser-
vices is to develop a data grid services that manage
large number of files replicated on multiple nodes
over different heterogeneous computational platforms
to allow users and federating service providers for
fast, up-to-date, reliable and secure access to dis-
tributed file storage. The presented environment has
been validated by developing replication providers
(service replicas) for service-oriented BLAST.

Initially the service-oriented BLAST has been de-
veloped in the SORCER environment (S-BLAST)
with no replication service. Below the basic concepts
of federated grid computing are described along with
explanations how S-BLAST works.

Building on the Object-Oriented paradigm is the
Service-Oriented paradigm, in which the objects are
distributed, they are network objects that play some
predefined roles. A service provider is an object that
accepts messages from service requestors to execute
an item of work – a task. The task object is a service
request – a kind of elementary grid operation executed
by a service provider. A service jobber is a special-
ized service provider (broker) that executes a job – a
compound service request in terms of tasks and other
jobs. The job object is a service-oriented program that
is managed by a jobber and is dynamically bound to
all relevant and currently available service providers
on the service grid.

The collection of grid providers dynamically (in
runtime) identified by a jobber during a job execu-
tion is called a job federation. This runtime network
or grid federation is the jobs execution environment
and the job object is a service-oriented program. In
other words, the object-oriented concepts are applied
directly to the grid in the service-oriented paradigm.

A task and job is treated as a grid activity called an
exertion. An exertion is defined by its context model
(data), and by its service method (a pair: interface and
selector). A context model is a tree like structure of
data being processed. Each path of a tree names a
leave node where the data resides. A service method
defines a service provider (grid object) to be bound
to in runtime. This network object provides data de-
fined by the context or the business logic to be ap-
plied to the context. The method is primarily defined
by a provider type (interface) and selector (method
name) in the provider’s interface. The service method
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may also refer to a piece of code to be downloaded
and executed by a provider (mobile code). The in-
formation included in the service method allows the
SORCER program to bind the task to the network ob-
ject and process the context by the operation, which
is defined by the method selector. This type of service
provider is called a method provider. Another type of
service provider is a data (context) provider that pro-
vides shared data to grid method providers. Thus, both
context and method providers represent grid data and
operations respectively to be used in the grid-oriented
programs.

A job in SOCER is usually created interactively as
a service-oriented program (Kolonay & Sobolewski
2004). Alternatively a job creation can be delegated
to a job provider (in S-BLAST by BlastProvider) that
supplies a downloadable user agent code. Based on
the user’s input an S-BLAST job (jobs) is created by
BlastProvider and is passed on to a jobber. Each in-
struction in that program (job) is represented by the
component task in the job created by BlastProvider
according to the user input.

The computing S-BLAST framework has been
developed with no replication services initially. A
large BLAST job is divided into several indepen-
dent SORCER tasks that are distributed dynamically
and executed in parallel by generic SORCER ser-
vice providers - taskers. A collection of all service
providers (active and inactive) is called a SORCER
grid. A job execution federates providers that come
together for completing an S-BLAST job, with multi-
ple SORCER taskers as depicted in Figure 1 by bold
outlines.

The SORCER architecture allows services to share
data by using an object shared repository - a
space provider (spacer) implemented with JavaSpaces
(Freeman et al. 1999). A spacer allows for asyn-
chronous execution of tasks such that a task can wait
for a service to be available, in the case of S-BLAST,
a tasker. Taskers execute a downloaded code as it is
specified by a service method. In S-BLAST that ser-
vice method communicates with a BLAST database
and via a system call executes a BLAST program
(C/C++ executable). A jobber drops tasks of the job
being coordinated into the shared object space and
taskers at own pace pick them up from the spacer and
after executing them returns them back to the spacer.
The jobber collects all executed task from the spacer
and combines them into a resulting job returned to the
requestor.

Please note that federating service providers do
not have mutual associations prior to the job execu-
tion. They come together (federate) for a specific S-
BLAST job. Each provider in the federation performs
its services according to a jobber coordination strat-
egy defined by the job itself. Once the job is com-

plete the federation dissolves and the providers dis-
perse and seek other jobs to join. The same provider
can provide multiple services in the same federa-
tion and different providers can provide the same ser-
vice in different federations. The grid is dynamic in
which new services can enter the network and existing
services can leave the network at any instance. The
service-based architecture is resilient, self-healing,
and self-managing. The key to the resilience is the
transparency of service discovery and seamless sub-
stitution of one service with another. SORCER de-
fines all decentralized distributed components in the
system to be equal by public common interfaces. Each
peer may implement multiple specific (other than
SORCER common interfaces) interfaces that are pub-
lished when the peer joins the grid. Both arguments
and return values of these specific methods are in-
stances of type ServiceContext that represent service
data. By its ispecific interface (type) and optional at-
tributes (e.g., provider name), the network object can
be dynamically found on the network without a host
name and port required. These specific interfaces and
their implementations might change, as they are rele-
vant to particular service providers.

In the presented S-BLAST approach taskers can
use a single BLAST database or that database can
be local on each tasker node. In the former, having a
single database creates the network bottleneck for all
taskers accessing the same database and a single point
failure at the same time. In the latter, managing mul-
tiple frequently evolving databases on multiple hosts
is a system management nightmare. The solution is
to deploy one database that can be replicated by dedi-
cated SORCER replication providers (replicas). Thus,
a tasker can dynamically find available replicas and
use one of them as a part of the extended federation
for the S-BLAST job being coordinated by a jobber.
When any BLAST database is updated, all replicas
will synchronize the data accordingly so the tasker
will always have access to the most current informa-
tion.

4 ARCHITECTURE AND DESIGN
The following communication diagrams capture use
cases and explain the functionality of different com-
ponents defined for replication services in SORCER.

4.1 Overview
Basic components and interactions of the repli-
cation federation are illustrated in Figure 2. A
replica provider is a pair of service providers: a
replica provider metadata-store (RPMS) and a replica
provider byte-store (RPBS). In Figure 2 an instance of
replica provider is indicated by a dashed ellipse. Co-
ordination and data synchronization between RPMS
providers is facilitated by a spacer.
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Figure 1: S-BLAST components and data flow without replication services. The federation components are
marked by bold outlines.

Figure 2: Overview of basic components and the data flow in the replication federation. The federation compo-
nents are marked by bold outlines.
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RPMS is responsible for storing and updating in-
formation about files to be the same in all RPMS in-
stances. An RPMS provider communicates with its
RPBS provider for synchronization and transfer of
files among different RPBS providers. RPMS uses an
embedded Mckoi database (Diehl 2005) to persist file
metadata.

The RPBS provider is specialized in efficient trans-
fer of files. It uses a smart proxy to transfer files over
a direct TCP connection. It stores files in the under-
laying file system – content store – for future access,
while metainformation is stored in a RPMS’ embed-
ded database.

An RPMS user agent, available via a service
browser, allows the user to upload and download files.
Use cases describing these operations are explained
below. The RPMS user agent is implemented as a Jini
ServiceUI (ServiceUI Project 2005).

Jini ServiceUIs are displayed using a service
browser. A service browser is a common user inter-
face for all Jini-based Services. IncaX (Bishop 2005)
offers a free service browser on their website for
download. A service browser has the ability to down-
load and invoke a user interface for any service with-
out prior configuration.

4.2 The Browsing Files Use Case

Figure 3: The Browsing Files Use Case

The Browsing File Use Case shown in Figure 3 de-
fines the first step that the user performs for using
the replication service. The user interactes with the
RPMS service through its ServiceUI from a service
browser. The user can interactively select and submit
files to be replicated.

To display the directory structure, the RPMS
SeriveUI gets the context for the root node, containing
information about the root directory and its child ele-
ments. With this information it can start listing subdi-
rectory contents. This information is then displayed to
the user. The user is now able to browse, by selecting
directories, files and read their content.

4.3 The Writing File Use Case
The Write File Use Case (Figure 4) is that of storing
file in the replication service. The user can select a

Figure 4: The Writing Files Use Case

local file in the RPMS ServiceUI and upload it. Two
things happen:

The content of the file is send to a byte-store
provider. This provider writes the contents of the file
to a local file system. Then a location information ex-
ertion is written into the exertion space, which con-
tains the information where the file can be found. This
is used to synchronize it with other replica byte stores.

The metainformation is passed to the replica
metadata-store. It stores this data in its database. Then
it writes a metainformation exertion into the exertion
space, which has the same information about the file.
This information will be read by other metadata-store
providers and inserted into their databases.

4.4 The Scheduling Update Use Case

Figure 5: The Scheduling Update Use Case

The Scheduling Update Use Case (Figure 5)
describes the scheduling update functionality of
RPMS. Each replica metadata-store communicates
any changes via exertions (metaexertions) written into
the exertion space. Each RPMS maintains a listener
that is notified about it and reads metaexertions from
the space. A metaexertion is shared via the exertion
space, so that all other providers can read it. The lis-
tener passes the information to its replica provider
which updates its database tables to reflect the new
metainformation changes. The metadata-store then
enqueues this information into a FIFO queue data
structure for later processing.

4.5 The Processing Update Use Case
The Processing Update Use Case (Figure 6) is used to
replicate every new file available among all existing
replicas. The RMMS downloading process retrieves
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Figure 6: The Processing Update Use Case

the first item in the queue, and starts processing the
updates by taking the location exertion from the ex-
ertion space, if it is available. By taking the exer-
tion the current RPMS synchronizes automatically its
operations with other RPMS downloading processes.
Once the location exertion is received, it reads the file
from one byte-store and writes it to its own byte-store.
Once this is done, it can now write two exertion loca-
tions back into the exertion space, since the file is now
present in one more additional location.

4.6 The Reading File Use Case

Figure 7: The Reading File Use Case

The the Reading File Use Case two disctict cases
have to be looked at. If the file is already available at
the local byte store, the ServiceUI is connected to the
local byte-store, and the user can download the file
from there.

When a read file request is made for a file which
is not available in the local byte-store (Figure 7), the
current metadata-store writes a request exertion to the
exertion space, which contains metainformation about
the missing file. The metadata-store that has a copy of
the requested file takes this request exertion from the
exertion space and writes a location exertion specifi-
cally for the requesting metadata-store. The request-
ing metadata-store takes the location exertion from
the exertion space which contains information where
the file can be found. It can now copy the file from the

byte store provided in the location exertion to its local
byte store, and then make it available to the user.

5 IMPLEMENTATION OF FEDERATED REPLI-
CATION SERVICES IN S-BLAST

Replica providers have been implemented in the S-
BLAST environment presented in the Section 3. S-
BLAST providers are distributed across multiple het-
erogeneous nodes. Each of theses providers requires
a large database file for the actual processing.

In earlier versions of S-BLAST this database
file had to be copied manually to every machine.
With replication services in place a new or updated
database file is uploaded to one of existing RPMSs
only. The new S-BLAST user interface is shown in
Figure 8. Now it contains a pane (bottom-left) inter-
acting directly with the RPMS provider to allow the
user manage BLAST databases easily. As soon as a
new file is uploaded into the replication service the
user agent is connected to, it gets replicated among
all nodes. This gives this system an advantage over
other BLAST-based distributed systems that usually
do not provide database replication.

Figure 8: User interface for Service Oriented Basic
Local Alignment Search Tool (S-BLAST)

6 CONCLUSIONS
The design aspects of federated replication services
is described and a successful S-BLAST deployment
presented. First, the version of a federated S-BLAST
is presented to contrast it to a version that naturally
complements exiting providers with new replication
service.

Operation testing proved to be successful for feder-
ating replica providers as all the described function-
alities that includes uploading, reading a file, making
changes, and writing a file were found to be working
as defined by the presented use cases in the S-BLAST
environment. Maintenance and portability have been
tested by starting the replication services on differ-
ent OS platforms (Microsoft Windows, Linux, Unix)
wherein before the provider is made available for use,
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it synchronizes automatically with existing replica-
tion service by the presented update functionality. Re-
liability tests proved to be successful as no files in the
replica byte-store were lost even when some services
were restarted while others were had been running.

Other grid data management systems, like Globus
provide only a pull-functionality. Data has to be re-
quested before it is actually transferred to the host of
choice. With SORCER replication services, however,
the knowledge about what the data that is needed can
be used by a replication service to optimize data trans-
fer and to provide efficient access.

The presented federated grid approach to file stor-
age is designed to let users focus more on how they
use data, than how they store it. Combining compute
grid with data grids lets us not only harness available
but unused resources by dynamically allocating and
deallocating capacity, and bandwidth, but also shar-
ing and processing data among numerous distributed
computers. These grids can span locations, organiza-
tions, machine architectures and software boundaries,
offering power, collaboration and information access
to connected users.
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