
Proceedings of the International Multiconference on ISSN 1896-7094
 Computer Science and Information Technology, pp. 765 – 778 © 2007 PIPS

Federated Method Invocation with Exertions

Michael Sobolewski

Computer Science, Texas Tech University
SORCER Research Group, http://sorcer.cs.ttu.edu

sobol@cs.ttu.edu

Abstract. Six generations of RPC systems can be distinguished including
Federated Method Invocation (FMI) presented in this paper. Some of them—
CORBA, Java RMI, and Web/OGSA services—support distributed objects.
However, creating object wrappers implementing remote interfaces doesn’t
have a great deal to do with object-oriented distributed programming.
Distributed objects developed that way are usually ill-structured with missing
core object-oriented traits: encapsulation, instantiation, inheritance, and
network-centric messaging by ignoring the real nature of networking. A
distributed system is not just a collection of distributed objects—it’s the
network of dynamic objects. In particular, the object wrapping approach does
not help to cope with network-centric messaging, invocation latency, object
discovery, dynamic object federations, fault detection, recovery, partial failure,
etc. The Jini™ architecture does not hide the network; it allows the
programmer to deal with the network reality: leases for network resources,
distributed events, transactions, and discovery/join protocols to form service
federations. An exertion-based architecture presented in this paper implements
FMI to support service-oriented metaprogramming. The new triple Command
pattern architecture presented in this paper uses Jini service management for
managing the network of FMI objects.

1 Introduction

Socket-based communication forces us to design distributed applications using a
read/write (input/output) interface, which is not how we generally design non-
distributed applications based on procedure call (request/response) communication. In
1983, Birrell and Nelson devised remote procedure call (RPC) [2], a mechanism to
allow programs to call procedures on other hosts. So far, six RPC generations can be
distinguished:
1. First generation RPCs [2]—Sun RPC (ONC RPC) and DCE RPC, which are

language, architecture, and OS independent;
2. Second generation RPCs—CORBA [20] and Microsoft DCOM-ORPC, which add

distributed object support;
3. Third generation RPC—Java RMI [17] is conceptually similar to the second

generation but supports the semantics of object invocation in different address
spaces that are built for Java only. RMI fits cleanly into the language with no need
for standardized data representation, external interface definition language, and
with behavioral transfer that allows remote objects to perform operations that are
determined at runtime;

765

766 Michael Sobolewski

4. Fourth generation RPCs—next generation of Java RMI, Jini Extensible Remote
Invocation (Jini ERI) with dynamic proxies, smart proxies, network security, and
with dependency injection defining exporters, end points, and security;

5. Fifth generation RPCs—Web/OGSA Services RPC [16, 27] and the XML
movement including Microsoft WCF/.NET;

6. Sixth generation RPC—Federated Method Invocation (FMI), presented in this
paper, allows for concurrent invocations on multiple federating hosts (virtual
metacomputer) in the SORCER environment [25].
All the RPC generations are based on a form of service­oriented architecture

(SOA) discussed in Section 2. However, CORBA, RMI, and Web/OGSA services are
in fact object­oriented wrappers of network interfaces that hide distribution and
ignore the real nature of network through classical abstractions of object­oriented
programming using existing network technologies. The fact that object­oriented
languages are used to create these object wrappers doesn’t mean that developed
distributed objects have a great deal to do with object­oriented distributed
programming. For example, CORBA defines many services, and implementing them
using distributed objects does not make them well structured with core object­
oriented traits: encapsulation, instantiation, inheritance, and network­centric
messaging. Similarly in RMI, marking objects with the Remote interface does not
help to cope with network­centric messaging, object discovery, dynamic federation,
fault detection, recovery, partial failure, etc.

Programmers use abstractions all the time. The source code written in
programming language is an abstraction of the machine language. From machine
language to object-oriented programming, layers of abstractions have accumulated
like geological strata. Every generation of SW architects and programmers uses it’s
era’s programming languages and tools to build programs of the next generation.
Each architecture and programming language used reflects a relevant abstraction, and
usually the type and quality of the abstraction implies the complexity of problems we
are able to solve. For example, a procedural language provides an abstraction of an
underlying machine language. Building on the object-oriented distributed paradigm is
the Federated Service Object-Oriented (FSOO) paradigm exemplified by the Jini
architecture [12] in which the network objects come together on the fly to play their
predefined roles. In the Service-ORiented Computing EnviRonmet (SORCER)
developed at Texas Tech University [25], a service provider is a remote object that
accepts network requests — called exertions—from service requestors to execute an
item of work. While conventional objects encapsulate data and operations, exertions
encapsulate data, operations, and control strategy. An exertion can federate on
multiple hosts according to its control strategy.

The SORCER metacomputing environment adds an entirely new layer of
abstraction to the practice of grid computing—exertion-oriented programming. The
exertion-oriented programming makes a positive difference in service-oriented
programming primarily through a new metaprogramming abstraction as experienced
in many grid-computing projects including projects deployed at GE Global Research
Center, GE Aviation, Air Force Research Lab, and SORCER Lab [19, 8, 9, 14, 22].

An exertion submitted to any provider in SORCER dynamically bounds to all
relevant and currently available service providers on the network. The providers that

 Federated Method Invocation with Exertions 767

dynamically participate in this invocation are collectively called an exertion
federation. This federation is also called a virtual metacomputer since federating
services are located on multiple physical compute nodes held together by the FSOO
infrastructure so that, to the individual exertion requestor, it looks and acts like a
single computer.

The SORCER environment provides the means to create interactive FSOO
programs [22] and execute them using the SORCER runtime infrastructure presented
in Section 3. Exertions can be created using interactive user interfaces downloaded on
the fly from service providers. Using these interfaces, the user can execute and
monitor the execution of exertions within the FSOO metacomputer. The exertions can
be persisted for later reuse, allowing the user to quickly create new applications or
programs on the fly in terms of existing, usually persisted, exertions.

SORCER is based on the evolution of concepts and lessons learned in the FIPER
project [5,21], a $21.5 million program founded by NIST (National Institute of
Standards and Technology). Academic research on exertion-oriented programming
has been established at the SORCER Laboratory, TTU, [25] where 23 SORCER
related research studies have been investigated so far [26]. The current version of
FMI used in SORCER is described in this paper.

The paper is organized as follows. Section 2 provides a brief description of a
service oriented architecture with a related discussion of distribution transparency;
Section 3 describes the SORCER methodology; Section 4 presents federated method
invocation; Section 5 provides concluding remarks.

2 SOA and Distribution Transparency

Various definitions of a Service-Oriented Architecture (SOA) leave a lot of room for
interpretation. In general terms, SOA is a software architecture using loosely coupled
software services that integrates them into a distributed computing system by means
of service-oriented programming. Service providers in the SOA environment are
made available as independent service components that can be accessed without a
priori knowledge of their underlying platform or implementation. While the client-
server architecture separates a client from a server, SOA introduces a third
component, a service registry. In SOA, the client is referred to as a service requestor
and the server as a service provider. The provider is responsible for deploying a
service on the network, publishing its service to one or more registries, and allowing
requestors to bind and execute the service. Providers advertise their availability on the
network; registries intercept these announcements and add published services. The
requestor looks up a service by sending queries to registries and making selections
from the available services. Requestors and providers can use discovery and join
protocols to locate registries and then publish or acquire services on the network. We
can distinguish the service object-oriented architectures (SOOA), where providers
are network objects accepting remote invocations, from service protocol oriented
architectures (SPOA), where a communication protocol is fixed and known
beforehand by the provider and requestor. Based on that protocol and a service
description obtained from the service registry, the requestor can bind to the service
provider by creating a proxy used for remote communication over the fixed protocol.
In SPOA a service is usually identified by a name. If a service provider registers its

768 Michael Sobolewski

service description by name, the requestors have to know the name of the service
beforehand.

In SOOA, a proxy—an object implementing the same service interfaces as its
service provider—is registered with the registries and it is always ready for use by
requestors. Thus, in SOOA, the service provider publishes the proxy as the active
surrogate object with a codebase annotation, e.g., URLs to the code defining proxy
behavior (RMI and Jini ERI). In SPOA, by contrast, a passive service description is
registered (e.g., an XML document in WSDL for Web/OGSA services, or an interface
description in IDL for CORBA); the requestor then has to generate the proxy (a stub
forwarding calls to a provider) based on a service description and the fixed
communication protocol (e.g., SOAP in Web/OGSA services, IIOP in CORBA). This
is referred to as a bind operation. The binding operation is not required in SOOA
since the requestor holds the active surrogate object obtained from the registry.

Web services and OGSA services cannot change the communication protocol
between requestors and providers while the SOOA approach is protocol neutral [30].
In SOOA, how an object proxy communicates with a provider is established by the
contract between the provider and its published proxy and defined by the provider
implementation. The proxy’s requestor does not need to know who implements the
interface or how it is implemented. So-called smart proxies (Jini ERI) grant access to
local and remote resources; they can also communicate with multiple providers on the
network regardless of who originally registered the proxy. Thus, separate providers
on the network can implement different parts of the smart proxy interface.
Communication protocols may also vary, and a single smart proxy can also talk over
multiple protocols including application specific protocols.

SPOA and SOOA differ in their method of discovering the service registry.
SORCER uses dynamic discovery protocols to locate available registries (lookup
services) as defined in the Jini architecture [12]. Neither the requestor who is looking
up a proxy by its interfaces nor the provider registering a proxy needs to know
specific locations. In SPOA, however, the requestor and provider usually do need to
know the explicit location of the service registry—e.g., the IP address of an
ONC/RPC portmapper, a URL for RMI registry, a URL for UDDI registry, an IP
address of a COS Name Server—to open a static connection and find or register a
service. In deployment of Web and OGSA services, a UDDI registry is sometimes
even omitted (WSDL descriptions are shared via files outside of the system); in
SOOA, lookup services are mandatory due to the dynamic nature of objects identified
by service types. Interactions in SPOA are more like client-server connections (e.g.,
HTTP, SOAP, IIOP), in many cases with no need to use service registries at all.

Let’s emphasize the major distinction between SOOA and SPOA: in SOOA, a
proxy is created and always owned by the service provider, but in SPOA, the
requestor creates and owns a proxy which has to meet the requirements of the
protocol that the provider and requestor agreed upon a priori. Thus, in SPOA the
protocol is always a generic one, reduced to a common denominator—one size fits all
—that leads to inefficient network communication in some cases. In SOOA, each
provider can decide on the most efficient protocol(s) needed for a particular
distributed application.

Service providers in SOOA can be considered as independent network objects
finding each other via service registries and communicating through message passing.
A collection of these objects sending and receiving messages—the only way these

 Federated Method Invocation with Exertions 769

objects communicate with one another—looks very much like a service object-
oriented distributed system.

Do you remember the eight fallacies of network computing? [4] We cannot just
take an object-oriented program developed without distribution in mind and make it a
distributed system, ignoring the unpredictable network behavior. Most RPC systems,
except Jini, hide the network behavior and try to transform local communication into
remote communication by creating distribution transparency based on a local
assumption of what the network might be. However every single distributed object
cannot do that in a uniform way as the network is a heterogeneous distributed system
and cannot be represented completely within a single entity.

The network is dynamic, can’t be constant, and introduces latency for remote
invocations. Network latency also depends on potential failure handling and recovery
mechanisms so we cannot assume that a local invocation is similar to remote
invocation. Thus complete transparency distribution—by making calls on distributed
objects as though they were local—is impossible to achieve in practice. The
distribution is not just an object-oriented implementation of a single type of
distributed object; it’s a metasystemic issue in object-oriented distributed
programming.

Exertion-based programming is introduced to handle the metasystemic distribution
in SORCER by using indirect remote method invocation with no service provider
explicitly specified in the network request (exertion). Specific infrastructure objects
support exertion-oriented programming combined with FMI. That infrastructure
defines SORCER’s distributed object modularity, extensibility, and reuse of service-
oriented components consistent with the relevant metacomputing granularity and
dependency injection—key features of object-oriented distributed programming that
are usually missing in SPOA programming environments.

3 Federated Service Object-oriented Computing Environment:
SORCER

SORCER is a federated service-to-service (S2S) metacomputing environment that
treats service providers as network objects with well-defined semantics of a federated
service object-oriented architecture (FSOOA). It is based on Jini semantics of
services [12] in the network and Jini programming model with explicit leases,
distributed events, transactions, and discovery/join protocols. While Jini focuses on
service management in a networked environment, SORCR is focused on exertion-
oriented programming and the execution environment for exertions. SORCER uses
Jini discovery/join protocols to implement its FSOOA and FMI.

In SOOA, a service provider is an object that accepts remote messages from
service requestors to execute an item of work. These messages are called service
exertions that describe service data, operations and provider’s control strategy. A task
exertion is an elementary service request, a kind of elementary remote instruction
(elementary statement) executed by a single service provider or a small-scale
federation. A composite exertion called a job exertion is defined hierarchically in
terms of tasks and other jobs, a kind of network procedure executed by a large-scale
federation. The executing exertion is a service-oriented program that is dynamically
bound to all needed and currently available service providers on the network. This

770 Michael Sobolewski

collection of providers identified in runtime is called an exertion federation. This
federation is also called an exertion space. While this sounds similar to the object-
oriented paradigm, it really isn’t. In the object-oriented paradigm, the object space is
a program itself; here the exertion space is the execution environment for the exertion
that is a service-oriented distributed program. This changes the programming
paradigm completely. In the former case the object space is hosted by a single
computer, but in the latter case the service providers are hosted by the network of
computers.

The overlay network of service providers is called the service provider grid and an
exertion federation is called a virtual metacomputer. The metainstruction set of the
metacomputer consists of all operations offered by all service providers in the grid.
Thus, a service-oriented program is composed of metainstructions with its own
service-oriented control strategy and service context representing the metaprogram
parameters. The service context describes the data that tasks and jobs work on.
Exertion-oriented programs (metaprograms) can be created interactively [22] and
allow for a dynamic federation to transparently coordinate their execution within the
grid. Please note that these metacomputing concepts are defined differently in
classical grid computing where a job is just an executing process for a submitted
executable code with no federation being formed.

Each SORCER provider offers services to other peers [8] on the object-oriented
overlay network. These services are exposed indirectly by methods in well-known
public remote interfaces and considered as elementary (tasks) or compound (jobs)
statements of the FSOOA [21]. Requestors do not need to know the exact location of
a provider beforehand; they can find it dynamically by discovering Jini lookup
services and then looking up a needed service implementing required service types.
Service providers do not have mutual associations prior to the execution of an
exertion; they come together dynamically (federate) for all nested tasks and jobs in
the exertion. Specialized providers within the federation, or task peers, execute
service tasks. Jobs are coordinated by a rendezvous or job peer called a Jobber, one
of SORCER infrastructure services. However, a job can be sent to any service
provider (peer). A peer that is not a Jobber type is responsible for forwarding the job
to one of available rendezvous peers in the SORCER grid and returning results to the
requestor.

Thus implicitly, any peer can handle any job or task. Once the job execution is
complete, the federation dissolves and the providers disperse to seek other exertions
to join. Also, SORCER supports a traditional approach to grid computing similar to
those found in Condor [28] and Globus [27]. Here, instead of exertions being
executed by services providing business logic for requested exertions, the business
logic comes from the service requestor's executable programs that seek compute
resources on the network.

Grid-based services in the SORCER environment include Grider services
collaborating with Jobber services for traditional grid job submission, and Caller and
Methoder services for task execution [13]. Callers execute conventional programs via
a system call as described in the service context of a submitted task. Methoders
download required Java code (task method) from requestors to process any submitted
context accordingly with the downloaded code. In either case, the business logic
comes from requestors; it is conventional executable code invoked by Callers with the
standard Caller’s service context or mobile Java code executed by Methoders with
any service context provided by the requestor.

 Federated Method Invocation with Exertions 771

4 Federated Method Invocation (FMI)

Each programming language provides a specific computing abstraction. Procedural
languages are abstractions of assembly languages. Object-oriented languages abstract
elements in the application domain that refer to “objects” communicating via message
passing as their representation in the corresponding solution space. The object-
oriented distributed programming should allow us to describe the distributed problem
in terms of the intrinsic unpredictable network problem instead of in terms of
distributed objects that hide the notion of the network.

What intrinsic distributed abstractions are defined in SORCER? Well, service
providers are “objects”, but they are specific objects—they are network objects with a
network state, network behavior, and network type(s). There is still a connection to
distributed objects: each service provider looks like a distributed object (compute
node) in that it has a network state, network behavior, and network types(s). Service
providers act also as network peers; they are replicated and dynamically provisioned
for reliability to compensate for network failures [18]. They can be found
dynamically in runtime by type(s) they implement. They can federate for executing a
specific network request called an exertion and perform hierarchically nested
(component) exertions. An exertion encapsulates service data, operations, and
provider’s control strategy. The component exertions may need to share context data
of ancestor exertions, and the top-level exertion is complete only if all nested
exertions are successful.

With that very concise introduction to the abstractions of exertion-based
programming, let’s look in detail at how Federated Method Invocation (FMI) is
structured.

4.1 Service Messaging and Exertions

In object-oriented terminology, a message is the single means of passing control to an
object. If the object responds to the message, it has an operation and its
implementation (method) for that message. Because object data is encapsulated and
not directly accessible, a message is the only way to send data from one object to
another. Each message specifies the name (identifier) of the receiving object, the
name (selector) of operation to be invoked, and its parameters. In the unreliable
network of objects; the receiving object might not be present or can go away at any
time. Thus, we should postpone receiving object identification as late as possible.
Grouping related messages per one request for the same data set makes a lot of sense
due to network invocation latency and common errors in handling. These
observations lead us to service-oriented messages called exertions that encapsulate
both multiple service signatures that define operations and service context as data.
Different types of exertions define own execution control strategies. Two basic
exertion types are distinguished: elementary and composite exertion called service
task and service job respectively. There are two ways of invoking exertions. In the
first case, an Exertion can be invoked by calling
Exertion.exert(Transaction). The second way is explained in Subsec-
tion 4.6.

772 Michael Sobolewski

4.2 Service Signatures

An exertion initiates the dynamic federation of all needed service providers
dynamically—as late as possible—as specified by signatures of top-level and nested
exertions. Thus, FMI is defined as exerting signatures, which is essentially an indirect
invocation of network methods specified by the exertion signatures for related service
contexts. SORCER service providers and requestors usually communicate via FMI.

A service Signature is defined by:
• signature name— a custom name
• service type— a Java interface name
• selector of the service operation—an operation name of the service type
• operation type— Signature.Type : PROCESS (default), PREPROCESS ,
POSTPROCESS

• service access type— Signature.Access ; PUSH (default) direct binding to
Jobbers or Taskers , or DROP using the Spacer service—shared exertion space

• priority— used by exertion’s control strategy
• execution time flag—if true, the execution time is returned in the service context
• notifyees—list of email addresses to notify upon exertion completion
• service attributes—requestor’s attributes matching provider’s registration attributes

An exertion can comprise of a collection of PREPRROCESS and POSTPROCESS
signatures, but only one PROCESS signature. The PROCESS signature defines the
binding provider for the exertion.

4.3 Exertion Types

A Task is the analog of a statement in conventional programming languages—here an
elementary step of the exertion-oriented program. Thus, it is a minimal unit of
structuring in exertion-oriented programming. If the provider responds to a Task, it
has a method for the task's PROCESS signature. Other signatures associated with the
Task provide for preprocessing and postprocessing by the same or its federating
providers. An APPEND signature provides for the context received from the provider
identified by this signature to be appended in runtime to the task’s currently processed
service context. Appending a service context allows a requestor to use actual data in
runtime not available to the requestor when a task is submitted. A Task is the single
means of passing control to a PROCESS provider. Note that a task is a batch of
operations that operate on the same service context—a Task shared execution state—
and all operations of the Task, as defined by signatures, can be executed by the same
provider or a group of federating providers coordinated by the PROCESS provider—
the provider identified by the PROCESS signature of the Exertion.

A Job is the analog of a procedure in conventional programming languages—here
a federated procedure is an exertion-oriented program. It is a composite of exertions
(see Figure 4) that makeup the federated procedure. The following flow control
exertion types define algorithmic logic of exertion-oriented programming:
ServiceTask, ServiceJob, IfExertion, WhileExertion,
ForExertion, DoExertionThrowExertion, TryExertion,
BreakExertion, ContinueExertion. Currently implemented flow control
Exertion types in SORCER are indicated above in bold.

 Federated Method Invocation with Exertions 773

4.4 Service Contexts

A service context is a data structure that describes service provider ontology along
with related data. A provider ontology is controlled by provider vocabulary that
describes objects and the relations between them in a provider's namespace within a
specified service domain of interest. A requestor submitting an exertion to a provider
has to comply with that ontology. In service context attributes and their values are
used as atomic conceptual primitives, and complements are used as composite ones. A
complement is an attribute sequence (path) with a value at the last position. An
elementary context property consists of a context subject (main complement) and a
set of context complements, and usually corresponds to a simple sentence of natural
language.

A service context is a tree-like structure described conceptually in the EBNF
conceptual syntax specification as follows:
1. context = [subject ":"] complement { complement }.
2. subject = element.
3. complement = element ";".
4. element= path ["=" value].
5. path = attribute { "/" attribute } [{ "<" association ">" }] [{ "/" attribute }].
6. value = object.
7. attribute = identifier.
8. relation = domain product.
9. association = domain tuple.
10. product = attribute { "|" attribute }.
11. tuple = value { "|" value }.
12. attribute = identifier.
13. domain = identifier.
14. association = identifier.
15. identifier = letter { letter | digit }.

A relation with a single attribute is called a property and is denoted as attribute |
attribute. To illustrate the idea of context, let’s consider the following example:
laboratory/name = SORCER: university=TTU;
university/department/name=CS;
university/department/room/number=20B;
university/department/room/phone/number=806-742-
university/department/room/phone/ext=237;
director <person | Mike | W | Sobolewski> /email=sobol@cs.ttu.edu;
where the relation person is defined as follows: person | firstname | initial |
lastname.

A context leaf node, or data node is where the actual data resides. The service
context—all context paths—denotes an application domain namespace, and a context
model is its context with data nodes appended to its context paths. A context path is a
hierarchical name for a data item in a leaf node. Note that Context can be
represented as an XML document—what has been done in SORCER for
interoperability—but the power of object Contexts comes from the fact that any Java
object can be naturally used as a data node. In particular exertions themselves can be
used as data nodes and then executed and controlled by providers to run complex
iterative programs, e.g., nonlinear multidisciplinary optimization [14].

774 Michael Sobolewski

4.5 Service-to-Service (S2S) Computing

Tasks are usually executed by providers of the Tasker type (task peer). A Job
contains a service context called control context that describes the control strategy for
the job exertion. Dedicated service providers of the Jobber type (job peer also
called rendezvous peer), interpret and execute a job's control context in terms of the
job's nested exertions accordingly. A Jobber manages a shared context (shared
execution state) for the job federation and provides a substitution for input context
parameter mappings. A Jobber creates a federation of required service providers
(Taskers and Jobbers) in runtime. A SORCER peer (Servicer) that is unable
to execute an Exertion for any reason forwards the Exertion to any available
Servicer matching the exertion’s PROCESS signature and returns the resulting
exertion back to its requestor.

All SORCER service providers are service peers as they implement the top-level
Servicer interface. As a result, each Servicer can initiate a federation created in
response to Servicer.service(Exertion, Transaction). Servicers
come together to form a federation participating in execution of the same exertion.
When the exertion is complete, Servicers leave the federation and seek a new
exertion to join. Note that the same exertion can form a different federation for each
execution due to the dynamic nature of looking up Servicers by their implemented
custom interfaces. Despite the fact that every Servicer can accept any exertion,
Servicers have well defined roles in SORCER S2S exertion-oriented
programming:
a) Taskers – process service tasks
b) Jobbers – process service jobs
c) Contexters – provide service contexts for APPEND Signatures
d) FileStorers – provide access to federated file system providers [1, 23]
e) Cataloger – Servicer registries
f) Persisters – persist service contexts, tasks, and jobs to be reused for

interactive exertion-based programming
g) Spacers – manage exertion spaces shared across Servicers for space-based

computing [7]
h) Relayers – gateway providers, transform exertions to native representation, for

example integration with Web services and JXTA
i) Autenticators, Authorizers, Policers, KeyStorers – provide support

for service-oriented security
j) Auditors, Reporters, Loggers – support for accountability, reporting and

logging
k) Griders, Callers, Methoders – support conventional grid computing
l) Generic ServiceTasker and ServiceJobber implementations are used to

configure domain specific providers via dependency injection—configuration files
for smart proxying and inserting business objects called SORCER service beans.

 Federated Method Invocation with Exertions 775

4.6 FMI Triple Command Pattern

Polymorphism lets us encapsulate a request—an exertion—then establish the
signature of operation to call and vary the effect of calling the underlying operation
by varying its implementation. The Command design pattern [10] establishes an
operation signature as an interface and defines various implementations of the
interface. In FMI, the following three operations are defined:
1. Exertion.exert(Transaction):Exertion—join the federation;
2. Servicer.service(Exertion, Transaction):Exertion—request

a service in the federation from the top-level Servicer obtained by the receiver;
3. Exerter.exert(Exertion, Transaction):Exertion—execute the

argument exertion by the target provider in the federation.
The above Triple Command pattern defines various implementations of these
interfaces: Exertion, Servicer, and Exerter. This approach allows for the
P2P environment via the Servicer interface, extensive modularization of

Exertions and Exerters, and extensibility from the triple design pattern so
requestors can submit any service-oriented programs (exertions) they want with or
without transactional semantics. FMI triple Command Pattern is used as follows:
1. An exertion can be invoked by calling Exertion.exert(Transaction).

The Exertion.exert operation implemented in ServiceExertion uses
ServicerAccessor to locate in runtime the provider matching the exertion’s
PROCESS signature.

2. If the matching provider is found, then on its access proxy (that can also be a smart
proxy) the Servicer.service(Exertion, Transaction) method is
invoked.

3. When the requestor is authenticated and authorized by the provider to invoke the
method defined by the exertion’s PROCESS signature, then the provider calls its

own exert operation: Exerter.exert(Exertion, Transaction).
4. Exerter.exert method calls exert either of ServiceTasker or
ServiceJobber (depending on the type of the exertion: either Task or Job)
that by reflection calls the method specified in the PROCES signature (interface
and selector) of the exertion. All application domain methods of any application
interface (custom Tasker interfaces) have the same signature: a single Context
type parameter and a Context type return vale. Thus a custom interface looks
like an RMI interface with the above simplification on the common signature for
all interface methods.

In the FMI approach, a requestor can create any Exertion, composed from any
hierarchically nested Exertions, with any service provider supplied ontology. The
provider’s service context ontology, object proxies and registration object attributes
are network-centric; all of them are part of the provider’s registration so they can be
accessed via Cataloger or lookup services by any requestor on the network, e.g.,

service browsers [11] or custom service UI user agents [29] providing interactive
exertion-oriented programming. In SORCER, using these zero-install service UIs, the
user can define data for downloaded ontology and create a task/job to be executed on
the virtual metacomputer.

776 Michael Sobolewski

Individual Providers, in particular Taskers and Jobbers, implement their
own exert(Exertion, Transaction) methods according to their service
semantics and control strategy; in SORCER implemented by ServiceTasker and
ServiceJobber respectively. SORCER specific domain providers either subclass

ServiceTasker or ServiceJobber, or by dependency injection (using Jini
configuration methodology) configure either one with one of 12 proxying methods
developed in SORCER. In general, many different types of taskers and jobbers can
be used in SORCER at the same time (currently one ServiceTasker and one
ServiceJobber implementation exists) and exertions via their signatures will
make appropriate runtime choices as to what virtual metacomputer to run.

Invoking an exertion, let’s say ext, is similar to invoking an executable program
ext.exe at the command prompt. If we use the Tenex C shell (tcsh), invoking the
program is equivalent to: tcsh ext.exe, i.e., passing the executable ext.exe to
tcsh. Similarly, to invoke a metaprogram using FMI, in this case the exertion ext,
we call ext.exert(null) if no transactional semantics is required. Thus, the
exertion is the metaprogram and the network shell at the same time, which might first
come as a surprise, but close evaluation of this fact shows it to be consistent with the
meaning of object-oriented federated programming. Here, the virtual metacomputer is
a federation that does not exist when the exertion is created. Thus, the notion of the
virtual metacomputer is enclosed in the exertion exemplified by FMI.

The observation concluding that the exertion is the metaprogram and the network
shell at the same time brings us back to the distribution transparency issue discussed
in Section 2. It might appear that Exertion objects are network wrappers as they

hide network intrinsic unpredictable behavior. However, Exertions are not
distributed objects, as do not implement any remote interfaces; they are local objects.
Servicers are distributed objects and there are many types of Servicers
addressing different aspects of networking. The network intrinsic unpredictable
network behavior is addressed by the SORCER object-oriented distributed
infrastructure: Taskers, Jobbers, Catalogers, Spacers, FileStorers,

Authenticators, Authorizers, Policers, etc. The Servicer-based
infrastructure facilitates exertion-oriented programming and concurrent metaprogram
execution using the presented FMI and allows for constructing reliable object
oriented distributed systems from unreliable distribute components - Servicers.

5 Conclusions

A distributed system is not just a collection of distributed objects—it’s the network of
dynamic objects. From an object-oriented point of view, the network of dynamic
objects is the problem domain of object-oriented distributed programming that
requires relevant abstractions in the solution space. The exertion-based programming
introduces the new RPC abstraction with service providers and exertions instead of
object-oriented conventional objects and messages. Service providers can register
proxies, including smart proxies, via dependency injection using twelve methods
investigated in SORCER. Executing a top-level exertion means forming a dynamic

 Federated Method Invocation with Exertions 777

federation of currently available providers in the network that collaboratively
processes service contexts of all nested exertions. Services are invoked by passing
exertions on to providers indirectly via service object proxies that in fact are access
proxies allowing for service providers to enforce a security policy on access to
services. When a permission is granted, then the operation defined by an exertion’s
PROCESS signature is invoked by reflection. FMI allows for the P2P environment via
the Servicer interface, extensive modularization of Exertions and Exerters,
and extensibility from the triple command design pattern. The presented FMI has
been successfully deployed and tested in multiple concurrent engineering and large-
scale distributed applications.

References

1. Berger M., and Sobolewski M., SILENUS – A Federated Service-oriented Approach to
Distributed File Systems, In Next Generation Concurrent Engineering, ISPE/Omnipress,
pp. 89-96 (2005).

2. Birrell A. D. & Nelson B. J., Implementing Remote Procedure Calls, XEROX CSL-83-7,
October 1983.

3. Edwards W. K., Core Jini, 2nd ed., Prentice Hall (2000).
4. Fallacies of Distributed Computing, Accessed on: July 15, 2007. Available at:

http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
5. FIPER: Federated Intelligent Product EnviRonmet, Available at:

http://sorcer.cs.ttu.edu/fiper/fiper.html Accessed on: July 15, 2007.
6. Foster I., Kesselman C., Tuecke S., The Anatomy of the J. Supercomputer Applications,

15(3) (2001).
7. Freeman E., Hupfer S., & Arnold K. JavaSpaces™ Principles, Patterns, and Practice,

Addison-Wesley, ISBN: 0-201-30955-6 (1999).
8. Goel S., Shashishekara Talya S. S., Sobolewski M., Service-based P2P overlay network for

collaborative problem solving, Decision Support Systems, Volume 43, Issue 2, March
2007, pp. 547-568 (2007).

9. Goel S, Talya S., and Sobolewski M., Preliminary Design Using Distributed Service-based
Computing, Proceeding of the 12th Conference on Concurrent Engineering: Research
and Applications, ISPE, Inc., pp. 113-120 (2005).

10. Grand M., Patterns in Java, Volume 1, Wiley, ISBN: 0-471-25841-5 (1999).
11. Inca X™ Service Browser for Jini Technology, Available at:

http://www.incax.com/index.htm?http://www.incax.com/service­
browser.htm

12. Jini architecture specification, Version 2.1. Available at: http://www.sun.com/softwar
e/jini/spec/jini1.2html/jini­title.html Accessed on: March 15, 2007
(2001)

13. Khurana V., Berger M., Sobolewski M., A Federated Grid Env. with Replication Services,
In Next Generation Concurrent Engineering, ISPE/Omnipress (2005).

14. Kolonay R. M., Sobolewski M., Tappeta R., Paradis M., Burton S. 2002, Network-Centric
MAO Environment, The Society for Modeling and Simulation International, Westrn
Multiconference, San Antonio, TX (2002)

15. Lapinski M., Sobolewski M., Managing Notifications in a Federated S2S Environment,
International Journal of Concurrent Engineering: Research & Applications, Vol. 11, pp.
17-25 (2003).

16. McGovern J., Tyagi S., Stevens M. E., Mathew S., Java Web Services Architecture, Morgan
Kaufmann (2003).

http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://www.incax.com/index.htm?http://www.incax.com/service-browser.htm
http://www.incax.com/index.htm?http://www.incax.com/service-browser.htm
http://www.incax.com/index.htm?http://www.incax.com/service-browser.htm
http://www.incax.com/index.htm?http://www.incax.com/service-browser.htm
http://www.incax.com/index.htm?http://www.incax.com/service-browser.htm
http://www.incax.com/index.htm?http://www.incax.com/service-browser.htm
http://sorcer.cs.ttu.edu/fiper/fiper.html
http://sorcer.cs.ttu.edu/fiper/fiper.html
http://sorcer.cs.ttu.edu/fiper/fiper.html
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

778 Michael Sobolewski

17. Pitt E., McNiff K., java.rmi: The Remote Method Invocation Guide, Addison-Wesley
Professional (2001).

18. Project Rio, A Dynamic Service Architecture for Distributed Applications. Available at:
https://rio.dev.java.net/. Accessed on: March 15, 2007.

19. Röhl P. J., Kolonay R. M., Irani R. K., Sobolewski M., Kao K. A Federated Intelligent
Product Environment, AIAA-2000-4902, 8th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, Long Beach, CA, September 6-8
(2000).

20. Ruh W. A., Herron T., Klinker P., IIOP Complete: Understanding CORBA and Middleware
Interoperability, Addison-Wesley (1999).

21. Sobolewski M., Federated P2P services in CE Environments, Advances in Concurrent
Engineering, A. A. Balkema Publishers, 2002, pp. 13-22 (2002).

22. Sobolewski M., Kolonay R., Federated Grid Computing with Interactive Service-oriented
Programming, International Journal of Concurrent Engineering: Research &
Applications, Vol. 14, No 1., pp. 55-66 (2006).

23. Sobolewski M., Soorianarayanan S., Malladi-Venkata R-K. 2003, Service-Oriented File
Sharing, Proceedings of the IASTED Intl., Conference on Communications, Internet, and
Information technology, pp. 633-639, ACTA Press (2003).

24. Soorianarayanan S., Sobolewski, M., Monitoring Federated Services in CE, Concurrent
Engineering: The Worldwide Engineering Grid, Tsinghua Press and Springer Verlag, pp.
89-95 (2004).

25. SORCER Research Group, Available at: http://sorcer.cs.ttu.edu/
26. SORCER Research Topics, Available at: http://sorcer.cs.ttu.edu/theses/
27. Sotomayor B., Childers L., Globus® Toolkit 4: Programming Java Services, Morgan

Kaufmann (2005).
28. Thain D., Tannenbaum T., Livny M. Condor and the Grid, In Fran Berman, Anthony J. G.

Hey, and Geo rey Fox, editors, Grid Computing: Making The Global Infrastructure a
Reality. John Wiley (2003).

29. The Service UI Project, Available at: http://www.artima.com/jini/serviceui/ind
ex.html. Accessed on: July 15, 2007.

30. Waldo J., The End of Protocols, Available at:http://java.sun.com/developer/techn
icalArticles/jini/protocols.html. Accessed on: March 15, 2007.

http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://www.artima.com/jini/serviceui/index.html
http://www.artima.com/jini/serviceui/index.html
http://www.artima.com/jini/serviceui/index.html
http://www.artima.com/jini/serviceui/index.html
http://www.artima.com/jini/serviceui/index.html
http://www.artima.com/jini/serviceui/index.html
https://rio.dev.java.net/
https://rio.dev.java.net/
https://rio.dev.java.net/

