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Abstract. Six  generations  of  RPC  systems  can  be  distinguished  including 
Federated Method Invocation (FMI) presented in this paper. Some of them—
CORBA,  Java  RMI,  and  Web/OGSA services—support  distributed  objects. 
However,  creating  object  wrappers  implementing  remote  interfaces  doesn’t 
have  a  great  deal  to  do  with  object-oriented  distributed  programming. 
Distributed objects developed that way are usually ill-structured with missing 
core  object-oriented  traits:  encapsulation,  instantiation,  inheritance,  and 
network-centric  messaging  by  ignoring  the  real  nature  of  networking.  A 
distributed  system  is  not  just  a  collection  of  distributed  objects—it’s  the 
network of dynamic objects. In particular, the object wrapping approach does 
not help  to  cope with  network-centric  messaging,  invocation latency,  object 
discovery, dynamic object federations, fault detection, recovery, partial failure, 
etc.  The  Jini™  architecture  does  not  hide  the  network;  it  allows  the 
programmer  to  deal  with  the  network  reality:  leases  for  network resources, 
distributed events,  transactions,  and discovery/join  protocols  to form service 
federations. An exertion-based architecture presented in this paper implements 
FMI to support service-oriented metaprogramming. The new triple Command 
pattern architecture presented in this paper uses Jini service management for 
managing the network of FMI objects.

1 Introduction

Socket-based  communication  forces  us  to  design  distributed  applications  using  a 
read/write  (input/output)  interface,  which  is  not  how  we  generally  design  non-
distributed applications based on procedure call (request/response) communication. In 
1983, Birrell and Nelson devised remote procedure call (RPC) [2], a mechanism to 
allow programs to call procedures on other hosts. So far, six RPC generations can be 
distinguished:
1. First  generation  RPCs  [2]—Sun  RPC  (ONC  RPC)  and  DCE RPC,  which  are 

language, architecture, and OS independent;
2. Second generation RPCs—CORBA [20] and Microsoft DCOM-ORPC, which add 

distributed object support;
3. Third  generation  RPC—Java  RMI  [17]  is  conceptually  similar  to  the  second 

generation but  supports  the semantics  of  object  invocation in  different  address 
spaces that are built for Java only. RMI fits cleanly into the language with no need 
for  standardized  data  representation,  external  interface  definition  language,  and 
with behavioral transfer that allows remote objects to perform operations that are 
determined at runtime;
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4. Fourth generation RPCs—next  generation of Java RMI, Jini Extensible  Remote 
Invocation (Jini ERI) with dynamic proxies, smart proxies, network security, and 
with dependency injection defining exporters, end points, and security;

5. Fifth  generation  RPCs—Web/OGSA  Services  RPC  [16,  27]  and  the  XML 
movement including Microsoft WCF/.NET;

6. Sixth  generation  RPC—Federated  Method  Invocation  (FMI),  presented  in  this 
paper,  allows  for  concurrent  invocations  on  multiple  federating  hosts  (virtual 
metacomputer) in the SORCER environment [25].
All   the  RPC   generations   are   based   on  a   form   of   service­oriented   architecture 

(SOA) discussed in Section 2. However, CORBA, RMI, and Web/OGSA services are 
in   fact   object­oriented   wrappers   of   network   interfaces   that   hide   distribution   and 
ignore  the  real  nature of  network  through classical  abstractions of  object­oriented 
programming   using   existing   network   technologies.   The   fact   that   object­oriented 
languages   are   used   to   create   these   object   wrappers   doesn’t   mean   that   developed 
distributed   objects   have   a   great   deal   to   do   with   object­oriented   distributed 
programming. For example, CORBA defines many services, and implementing them 
using   distributed   objects   does   not   make   them   well   structured   with   core   object­
oriented   traits:   encapsulation,   instantiation,   inheritance,   and   network­centric 
messaging. Similarly in RMI, marking objects with the  Remote interface does not 
help to cope with network­centric messaging, object discovery, dynamic federation, 
fault detection, recovery, partial failure, etc. 

Programmers  use  abstractions  all  the  time.  The  source  code  written  in 
programming  language  is  an  abstraction  of  the  machine  language.  From machine 
language to object-oriented programming, layers of abstractions have accumulated 
like geological strata. Every generation of SW architects and programmers uses it’s 
era’s  programming languages and tools  to build  programs of  the next  generation. 
Each architecture and programming language used reflects a relevant abstraction, and 
usually the type and quality of the abstraction implies the complexity of problems we 
are able to solve. For example, a procedural language provides an abstraction of an 
underlying machine language. Building on the object-oriented distributed paradigm is 
the  Federated  Service  Object-Oriented  (FSOO)  paradigm exemplified  by the  Jini 
architecture [12] in which the network objects come together on the fly to play their 
predefined  roles.  In  the  Service-ORiented  Computing  EnviRonmet  (SORCER) 
developed at Texas Tech University [25], a service provider is a remote object that 
accepts network requests — called exertions—from service requestors to execute an 
item of work. While conventional objects encapsulate data and operations, exertions 
encapsulate  data,  operations,  and  control  strategy.  An  exertion  can  federate  on 
multiple hosts according to its control strategy.

The  SORCER  metacomputing  environment  adds  an  entirely  new  layer  of 
abstraction to the practice of grid computing—exertion-oriented programming. The 
exertion-oriented  programming  makes  a  positive  difference  in  service-oriented 
programming primarily through a new metaprogramming abstraction as experienced 
in many grid-computing projects including projects deployed at GE Global Research 
Center, GE Aviation, Air Force Research Lab, and SORCER Lab [19, 8, 9, 14, 22].

An exertion submitted to  any provider  in  SORCER dynamically bounds to  all 
relevant and currently available service providers on the network. The providers that 
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dynamically  participate  in  this  invocation  are  collectively  called  an  exertion 
federation.  This  federation  is  also  called  a  virtual  metacomputer since  federating 
services are located on multiple physical compute nodes held together by the FSOO 
infrastructure so that,  to the individual exertion requestor,  it  looks and acts like a 
single computer.

The  SORCER  environment  provides  the  means  to  create  interactive  FSOO 
programs [22] and execute them using the SORCER runtime infrastructure presented 
in Section 3. Exertions can be created using interactive user interfaces downloaded on 
the  fly  from service  providers.  Using  these  interfaces,  the  user  can  execute  and 
monitor the execution of exertions within the FSOO metacomputer. The exertions can 
be persisted for later reuse, allowing the user to quickly create new applications or 
programs on the fly in terms of existing, usually persisted, exertions.

SORCER is based on the evolution of concepts and lessons learned in the FIPER 
project  [5,21],  a  $21.5  million  program  founded  by  NIST (National  Institute  of 
Standards  and  Technology).  Academic research on exertion-oriented  programming 
has  been  established  at  the  SORCER Laboratory,  TTU,  [25]  where  23  SORCER 
related research studies have been investigated so far [26].  The current version of 
FMI used in SORCER is described in this paper.

The  paper  is  organized  as  follows.  Section 2 provides a  brief  description  of  a 
service oriented architecture with a related discussion of distribution transparency; 
Section 3 describes the SORCER methodology; Section 4 presents federated method 
invocation; Section 5 provides concluding remarks.

2 SOA and Distribution Transparency

Various definitions of a Service-Oriented Architecture (SOA) leave a lot of room for 
interpretation. In general terms, SOA is a software architecture using loosely coupled 
software services that integrates them into a distributed computing system by means 
of  service-oriented  programming.  Service  providers  in  the  SOA environment  are 
made available as independent service components that can be accessed without a 
priori knowledge of their underlying platform or implementation. While the client-
server  architecture  separates  a  client  from  a  server,  SOA  introduces  a  third 
component, a service registry. In SOA, the client is referred to as a service requestor 
and the server  as  a  service  provider.  The provider  is  responsible  for  deploying  a 
service on the network, publishing its service to one or more registries, and allowing 
requestors to bind and execute the service. Providers advertise their availability on the 
network; registries intercept these announcements and add published services.  The 
requestor looks up a service by sending queries to registries and making selections 
from the available  services.  Requestors  and providers  can  use  discovery and join 
protocols to locate registries and then publish or acquire services on the network. We 
can distinguish the  service object-oriented architectures (SOOA),  where providers 
are  network  objects  accepting  remote  invocations,  from  service  protocol  oriented 
architectures (SPOA),  where  a  communication  protocol  is  fixed  and  known 
beforehand  by  the  provider  and  requestor.  Based  on  that  protocol  and  a  service 
description obtained from the service registry, the requestor can bind to the service 
provider by creating a proxy used for remote communication over the fixed protocol. 
In SPOA a service is usually identified by a name. If a service provider registers its 
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service description by name, the requestors have to know the name of the service 
beforehand.

In  SOOA,  a  proxy—an object  implementing  the same service  interfaces  as  its 
service provider—is registered with the registries and it is always ready for use by 
requestors. Thus, in SOOA, the service provider publishes the proxy as the active 
surrogate object with a codebase annotation, e.g., URLs to the code defining proxy 
behavior (RMI and Jini ERI). In SPOA, by contrast, a passive service description is 
registered (e.g., an XML document in WSDL for Web/OGSA services, or an interface 
description in IDL for CORBA); the requestor then has to generate the proxy (a stub 
forwarding  calls  to  a  provider)  based  on  a  service  description  and  the  fixed 
communication protocol (e.g., SOAP in Web/OGSA services, IIOP in CORBA). This 
is referred to as a bind operation. The binding operation is not required in SOOA 
since the requestor holds the active surrogate object obtained from the registry.

Web  services  and  OGSA services  cannot  change  the  communication  protocol 
between requestors and providers while the SOOA approach is protocol neutral [30]. 
In SOOA, how an object proxy communicates with a provider is established by the 
contract between the provider and its published proxy and defined by the provider 
implementation. The proxy’s requestor does not need to know who implements the 
interface or how it is implemented. So-called smart proxies (Jini ERI) grant access to 
local and remote resources; they can also communicate with multiple providers on the 
network regardless of who originally registered the proxy. Thus, separate providers 
on  the  network  can  implement  different  parts  of  the  smart  proxy  interface. 
Communication protocols may also vary, and a single smart proxy can also talk over 
multiple protocols including application specific protocols. 

SPOA and  SOOA differ  in  their  method  of  discovering  the  service  registry. 
SORCER uses  dynamic  discovery protocols  to  locate  available  registries  (lookup 
services) as defined in the Jini architecture [12]. Neither the requestor who is looking 
up  a  proxy by its  interfaces  nor  the  provider  registering a  proxy needs  to  know 
specific locations. In SPOA, however, the requestor and provider usually do need to 
know  the  explicit  location  of  the  service  registry—e.g.,  the  IP  address  of  an 
ONC/RPC portmapper,  a URL for RMI registry,  a URL for UDDI registry,  an IP 
address of a COS Name Server—to open a static connection and find or register a 
service. In deployment of Web and OGSA services, a UDDI registry is sometimes 
even  omitted  (WSDL descriptions  are  shared  via  files  outside  of  the  system);  in 
SOOA, lookup services are mandatory due to the dynamic nature of objects identified 
by service types. Interactions in SPOA are more like client-server connections (e.g., 
HTTP, SOAP, IIOP), in many cases with no need to use service registries at all.

Let’s  emphasize  the major  distinction  between SOOA and SPOA: in SOOA, a 
proxy  is  created  and  always  owned  by  the  service  provider,  but  in  SPOA,  the 
requestor  creates  and  owns  a  proxy which  has  to  meet  the  requirements  of  the 
protocol that  the provider and requestor agreed upon a priori.  Thus,  in SPOA the 
protocol is always a generic one, reduced to a common denominator—one size fits all
—that  leads to inefficient network communication in some cases. In  SOOA, each 
provider  can  decide  on  the  most  efficient  protocol(s)  needed  for  a  particular 
distributed application.

Service  providers  in  SOOA can  be  considered  as  independent  network  objects 
finding each other via service registries and communicating through message passing. 
A collection of these objects sending and receiving messages—the only way these 
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objects  communicate  with  one  another—looks  very  much  like  a  service  object-
oriented distributed system. 

Do you remember the eight fallacies of network computing? [4] We cannot just 
take an object-oriented program developed without distribution in mind and make it a 
distributed system, ignoring the unpredictable network behavior. Most RPC systems, 
except Jini, hide the network behavior and try to transform local communication into 
remote  communication  by  creating  distribution  transparency  based  on  a  local 
assumption of what the network might be. However every single distributed object 
cannot do that in a uniform way as the network is a heterogeneous distributed system 
and cannot be represented completely within a single entity. 

The  network  is  dynamic,  can’t  be  constant,  and  introduces  latency for  remote 
invocations. Network latency also depends on potential failure handling and recovery 
mechanisms  so  we  cannot  assume  that  a  local  invocation  is  similar  to  remote 
invocation. Thus complete transparency distribution—by making calls on distributed 
objects  as  though  they  were  local—is  impossible  to  achieve  in  practice.  The 
distribution  is  not  just  an  object-oriented  implementation  of  a  single  type  of 
distributed  object;  it’s  a  metasystemic  issue  in  object-oriented  distributed 
programming.

Exertion-based programming is introduced to handle the metasystemic distribution 
in SORCER by using indirect remote method invocation with no service provider 
explicitly specified in the network request (exertion). Specific infrastructure objects 
support  exertion-oriented  programming  combined  with  FMI.  That  infrastructure 
defines SORCER’s distributed object modularity, extensibility, and reuse of service-
oriented  components  consistent  with  the  relevant  metacomputing  granularity  and 
dependency injection—key features of object-oriented distributed programming that 
are usually missing in SPOA programming environments.

3 Federated Service  Object-oriented Computing  Environment: 
SORCER

SORCER is  a  federated service-to-service (S2S) metacomputing environment  that 
treats service providers as network objects with well-defined semantics of a federated 
service  object-oriented  architecture  (FSOOA).  It  is  based  on  Jini  semantics  of 
services  [12]  in  the  network  and  Jini  programming  model  with  explicit  leases, 
distributed events, transactions, and discovery/join protocols. While Jini focuses on 
service management in a networked environment, SORCR is focused on exertion-
oriented programming and the execution environment for exertions. SORCER uses 
Jini discovery/join protocols to implement its FSOOA and FMI. 

In  SOOA,  a  service  provider  is  an  object  that  accepts  remote  messages  from 
service requestors to execute an item of work.  These messages are called  service 
exertions that describe service data, operations and provider’s control strategy. A task 
exertion is an elementary service request,  a kind of elementary remote instruction 
(elementary  statement)  executed  by  a  single  service  provider  or  a  small-scale 
federation.  A composite  exertion called a  job exertion is  defined hierarchically in 
terms of tasks and other jobs, a kind of network procedure executed by a large-scale 
federation. The executing exertion is a service-oriented program that is dynamically 
bound to all needed and currently available service providers on the network. This 
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collection of  providers identified  in runtime is called an  exertion federation.  This 
federation is also called an  exertion space. While this sounds similar to the object-
oriented paradigm, it really isn’t. In the object-oriented paradigm, the object space is 
a program itself; here the exertion space is the execution environment for the exertion 
that  is  a  service-oriented  distributed  program.  This  changes  the  programming 
paradigm completely.  In  the  former  case  the  object  space  is  hosted  by  a  single 
computer, but in the latter case the service providers are hosted by the network of 
computers.

The overlay network of service providers is called the service provider grid and an 
exertion federation is called a  virtual metacomputer. The  metainstruction set of the 
metacomputer consists of all operations offered by all service providers in the grid. 
Thus,  a  service-oriented  program  is  composed  of  metainstructions  with  its  own 
service-oriented control  strategy and service context representing the metaprogram 
parameters.  The  service  context  describes  the  data  that  tasks  and  jobs  work  on. 
Exertion-oriented  programs  (metaprograms)  can  be  created  interactively [22]  and 
allow for a dynamic federation to transparently coordinate their execution within the 
grid.  Please  note  that  these  metacomputing  concepts  are  defined  differently  in 
classical grid computing where a job is just  an executing process for a submitted 
executable code with no federation being formed.

Each SORCER provider offers services to other peers [8] on the object-oriented 
overlay network. These services are exposed indirectly by methods in well-known 
public remote interfaces and considered as elementary (tasks) or compound (jobs) 
statements of the FSOOA [21]. Requestors do not need to know the exact location of 
a  provider  beforehand;  they  can  find  it  dynamically  by  discovering  Jini  lookup 
services and then looking up a needed service implementing required service types. 
Service  providers  do  not  have  mutual  associations  prior  to  the  execution  of  an 
exertion; they come together dynamically (federate) for all nested tasks and jobs in 
the  exertion.  Specialized  providers  within  the  federation,  or  task  peers,  execute 
service tasks. Jobs are coordinated by a rendezvous or job peer called a Jobber, one 
of  SORCER  infrastructure  services.  However,  a  job  can  be  sent  to  any  service 
provider (peer). A peer that is not a Jobber type is responsible for forwarding the job 
to one of available rendezvous peers in the SORCER grid and returning results to the 
requestor.

Thus implicitly, any peer can handle any job or task. Once the job execution is 
complete, the federation dissolves and the providers disperse to seek other exertions 
to join. Also, SORCER supports a traditional approach to grid computing similar to 
those  found  in  Condor  [28]  and  Globus  [27].  Here,  instead  of  exertions  being 
executed by services providing business logic for requested exertions, the business 
logic  comes  from the  service  requestor's  executable  programs  that  seek  compute 
resources on the network. 

Grid-based  services  in  the  SORCER  environment  include  Grider services 
collaborating with Jobber services for traditional grid job submission, and Caller and 
Methoder services for task execution [13]. Callers execute conventional programs via 
a  system call  as  described  in  the  service  context  of  a  submitted  task.  Methoders 
download required Java code (task method) from requestors to process any submitted 
context  accordingly with  the  downloaded code.  In  either  case,  the  business  logic 
comes from requestors; it is conventional executable code invoked by Callers with the 
standard Caller’s service context or mobile Java code executed by Methoders with 
any service context provided by the requestor.
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4 Federated Method Invocation (FMI)

Each programming language provides a specific computing abstraction. Procedural 
languages are abstractions of assembly languages. Object-oriented languages abstract 
elements in the application domain that refer to “objects” communicating via message 
passing  as  their  representation  in  the  corresponding  solution  space.  The  object-
oriented distributed programming should allow us to describe the distributed problem 
in  terms  of  the  intrinsic  unpredictable  network  problem  instead  of  in  terms  of 
distributed objects that hide the notion of the network.

What  intrinsic  distributed  abstractions  are  defined  in  SORCER?  Well,  service 
providers are “objects”, but they are specific objects—they are network objects with a 
network state,  network behavior, and  network type(s).  There is still a connection to 
distributed objects:  each service provider  looks like  a  distributed object (compute 
node) in that it has a network state, network behavior, and network types(s). Service 
providers act also as network peers; they are replicated and dynamically provisioned 
for  reliability  to  compensate  for  network  failures  [18].  They  can  be  found 
dynamically in runtime by type(s) they implement. They can federate for executing a 
specific  network  request  called  an  exertion and  perform  hierarchically  nested 
(component)  exertions.  An  exertion  encapsulates  service  data,  operations,  and 
provider’s control strategy. The component exertions may need to share context data 
of  ancestor  exertions,  and  the  top-level  exertion  is  complete  only  if  all  nested 
exertions are successful.

With  that  very  concise  introduction  to  the  abstractions  of  exertion-based 
programming,  let’s  look  in  detail  at  how Federated  Method  Invocation  (FMI)  is 
structured.

4.1 Service Messaging and Exertions

In object-oriented terminology, a message is the single means of passing control to an 
object.  If  the  object  responds  to  the  message,  it  has  an  operation  and  its 
implementation (method) for that message. Because object data is encapsulated and 
not directly accessible, a message is the only way to send data from one object to 
another.  Each message specifies  the  name (identifier)  of  the receiving object,  the 
name (selector)  of  operation  to  be  invoked,  and  its  parameters.  In  the  unreliable 
network of objects; the receiving object might not be present or can go away at any 
time. Thus,  we should postpone receiving object identification as late as possible. 
Grouping related messages per one request for the same data set makes a lot of sense 
due  to  network  invocation  latency  and  common  errors  in  handling.  These 
observations lead us to service-oriented messages called  exertions that encapsulate 
both multiple  service signatures that define operations and service context  as data. 
Different  types  of  exertions  define  own  execution  control  strategies.  Two  basic 
exertion types are distinguished: elementary and composite exertion called  service 
task and  service job respectively. There are two ways of invoking exertions. In the 
first  case,  an  Exertion can  be  invoked  by  calling 
Exertion.exert(Transaction).  The  second  way is  explained  in  Subsec-
tion 4.6. 
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4.2 Service Signatures

An  exertion  initiates  the  dynamic  federation  of  all  needed  service  providers 
dynamically—as late as possible—as specified by signatures of top-level and nested 
exertions. Thus, FMI is defined as exerting signatures, which is essentially an indirect 
invocation of network methods specified by the exertion signatures for related service 
contexts. SORCER service providers and requestors usually communicate via FMI.

A service Signature is defined by:
• signature name— a custom name 
• service type— a Java interface name 
• selector of the service operation—an operation name of the service type 
• operation type— Signature.Type : PROCESS (default), PREPROCESS , 
POSTPROCESS 

• service access type— Signature.Access ; PUSH (default) direct binding to 
Jobbers or Taskers , or DROP using the Spacer service—shared exertion space 

• priority— used by exertion’s control strategy 
• execution time flag—if  true, the execution time is returned in the service context
• notifyees—list of email addresses to notify upon exertion completion
• service attributes—requestor’s attributes matching provider’s registration attributes

An exertion can comprise of a collection of  PREPRROCESS and  POSTPROCESS 
signatures, but only one  PROCESS signature. The  PROCESS signature defines the 
binding provider for the exertion.

4.3 Exertion Types

A Task is the analog of a statement in conventional programming languages—here an 
elementary  step  of  the  exertion-oriented  program.  Thus,  it  is  a  minimal  unit  of 
structuring in exertion-oriented programming. If the provider responds to a  Task, it 
has a method for the task's PROCESS signature. Other signatures associated with the 
Task provide  for  preprocessing  and  postprocessing  by the  same  or  its  federating 
providers. An APPEND signature provides for the context received from the provider 
identified by this signature to be appended in runtime to the task’s currently processed 
service context. Appending a service context allows a requestor to use actual data in 
runtime not available to the requestor when a task is submitted. A Task is the single 
means of  passing control  to a  PROCESS provider.  Note that  a  task is  a batch of 
operations that operate on the same service context—a Task shared execution state—
and all operations of the Task, as defined by signatures, can be executed by the same 
provider or a group of federating providers coordinated by the PROCESS provider—
the provider identified by the PROCESS signature of the Exertion.

A Job is the analog of a procedure in conventional programming languages—here 
a federated procedure is an exertion-oriented program. It is a composite of exertions 
(see  Figure  4)  that  makeup  the  federated  procedure.  The  following  flow control 
exertion  types  define  algorithmic  logic  of  exertion-oriented  programming: 
ServiceTask,  ServiceJob,  IfExertion,  WhileExertion, 
ForExertion,  DoExertionThrowExertion,  TryExertion, 
BreakExertion, ContinueExertion. Currently implemented flow control 
Exertion types in SORCER are indicated above in bold. 
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4.4 Service Contexts

A service context is a data structure that describes service provider ontology along 
with  related  data.  A provider  ontology  is  controlled  by  provider  vocabulary  that 
describes objects and the relations between them in a provider's namespace within a 
specified service domain of interest. A requestor submitting an exertion to a provider 
has to comply with that ontology. In service context attributes and their values are 
used as atomic conceptual primitives, and complements are used as composite ones. A 
complement  is  an  attribute  sequence  (path)  with  a  value  at  the  last  position.  An 
elementary context property consists of a context subject (main complement) and a 
set of context complements, and usually corresponds to a simple sentence of natural 
language.

A service  context  is  a  tree-like  structure  described  conceptually  in  the  EBNF 
conceptual syntax specification as follows: 
1. context = [ subject  ":" ] complement { complement }. 
2. subject = element. 
3. complement = element ";". 
4. element= path [ "=" value ]. 
5. path = attribute { "/" attribute }  [  {  "<" association ">"  }  ] [ { "/" attribute } ]. 
6. value = object. 
7. attribute = identifier. 
8. relation = domain product. 
9. association = domain tuple. 
10. product = attribute { "|" attribute }. 
11. tuple = value { "|" value }. 
12. attribute  = identifier. 
13. domain = identifier. 
14. association = identifier. 
15. identifier = letter { letter | digit }. 

A relation with a single attribute is called a property and is denoted as attribute | 
attribute. To illustrate the idea of context, let’s consider the following example:
laboratory/name = SORCER: university=TTU; 
university/department/name=CS; 
university/department/room/number=20B; 
university/department/room/phone/number=806-742-
university/department/room/phone/ext=237; 
director <person | Mike | W | Sobolewski> /email=sobol@cs.ttu.edu; 
where   the   relation  person  is   defined   as   follows: person  |  firstname  |  initial  | 
lastname. 

A context leaf node, or  data node is where the actual data resides. The service 
context—all context paths—denotes an application domain namespace, and a context 
model is its context with data nodes appended to its context paths. A context path is a 
hierarchical  name  for  a  data  item  in  a  leaf  node.  Note  that  Context can  be 
represented  as  an  XML  document—what  has  been  done  in  SORCER  for 
interoperability—but the power of object Contexts comes from the fact that any Java 
object can be naturally used as a data node. In particular exertions themselves can be 
used as data nodes and then executed and controlled by providers to run complex 
iterative programs, e.g., nonlinear multidisciplinary optimization [14].
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4.5 Service-to-Service (S2S) Computing

Tasks are usually executed by providers  of  the  Tasker type  (task peer).  A  Job 
contains a service context called control context that describes the control strategy for 
the  job exertion.  Dedicated  service providers  of  the  Jobber type  (job peer  also 
called rendezvous peer), interpret and execute a job's control context in terms of the 
job's  nested  exertions  accordingly.  A  Jobber manages  a  shared  context  (shared 
execution state) for the job federation and provides a substitution for input context 
parameter mappings. A Jobber creates a federation of required service providers 
(Taskers and Jobbers) in runtime. A SORCER peer (Servicer) that is unable 
to execute an  Exertion for any reason forwards the  Exertion to any available 
Servicer matching the exertion’s  PROCESS signature and returns  the resulting 
exertion back to its requestor. 

All SORCER service providers are service peers as they implement the top-level 
Servicer interface. As a result, each Servicer can initiate a federation created in 
response  to  Servicer.service(Exertion,  Transaction). Servicers 
come together to form a federation participating in execution of the same exertion. 
When the exertion is complete,  Servicers leave the federation and seek a new 
exertion to join. Note that the same exertion can form a different federation for each 
execution due to the dynamic nature of looking up Servicers by their implemented 
custom interfaces. Despite the fact that every  Servicer can accept any exertion, 
Servicers have  well  defined  roles  in  SORCER  S2S  exertion-oriented 
programming:
a) Taskers – process service tasks 
b) Jobbers – process service jobs
c) Contexters – provide service contexts for APPEND Signatures
d) FileStorers – provide access to federated file system providers [1, 23]
e) Cataloger – Servicer registries
f) Persisters  –  persist  service  contexts,  tasks,  and  jobs  to  be  reused  for 

interactive exertion-based programming
g) Spacers  –  manage  exertion  spaces  shared  across  Servicers  for  space-based 

computing [7]
h) Relayers – gateway providers, transform exertions to native representation, for 

example integration with Web services and JXTA
i) Autenticators, Authorizers, Policers, KeyStorers – provide support 

for service-oriented security
j) Auditors,  Reporters,  Loggers – support for accountability, reporting and 

logging
k) Griders, Callers, Methoders – support conventional grid computing
l) Generic  ServiceTasker and  ServiceJobber implementations are used to 

configure domain specific providers via dependency injection—configuration files 
for smart proxying and inserting business objects called SORCER service beans.
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4.6 FMI Triple Command Pattern

Polymorphism  lets  us  encapsulate  a  request—an  exertion—then  establish  the 
signature of operation to call and vary the effect of calling the underlying operation 
by varying  its  implementation.  The  Command  design  pattern  [10]  establishes  an 
operation  signature  as  an  interface  and  defines  various  implementations  of  the 
interface. In FMI, the following three operations are defined: 
1. Exertion.exert(Transaction):Exertion—join the federation;
2. Servicer.service(Exertion,  Transaction):Exertion—request 

a service in the federation from the top-level Servicer obtained by the receiver; 
3. Exerter.exert(Exertion,  Transaction):Exertion—execute  the 

argument exertion by the target provider in the federation.
The  above  Triple  Command pattern  defines  various  implementations  of  these 
interfaces:  Exertion,  Servicer, and Exerter. This approach allows for the 
P2P  environment  via  the  Servicer interface,  extensive  modularization  of 

Exertions and  Exerters,  and  extensibility  from  the  triple  design  pattern  so 
requestors can submit any service-oriented programs (exertions) they want with or 
without transactional semantics. FMI triple Command Pattern is used as follows:
1. An exertion can be invoked by calling  Exertion.exert(Transaction). 

The  Exertion.exert operation  implemented  in  ServiceExertion uses 
ServicerAccessor to locate in runtime the provider matching the exertion’s 
PROCESS signature.

2. If the matching provider is found, then on its access proxy (that can also be a smart 
proxy)  the  Servicer.service(Exertion, Transaction) method  is 
invoked. 

3. When the requestor is authenticated and authorized by the provider to invoke the 
method defined by the exertion’s  PROCESS signature, then the provider calls its 

own exert operation: Exerter.exert(Exertion, Transaction). 
4. Exerter.exert  method   calls  exert  either   of  ServiceTasker  or 
ServiceJobber  (depending on the type of the exertion: either  Task or  Job) 
that by reflection calls the method specified in the  PROCES  signature (interface 
and selector) of the exertion. All application domain methods of any application 
interface (custom Tasker interfaces) have the same signature: a single Context 
type parameter and a  Context  type return vale. Thus a custom interface looks 
like an RMI interface with the above simplification on the common signature for 
all interface methods. 

In the FMI approach, a requestor can create any  Exertion,  composed from any 
hierarchically nested Exertions, with any service provider supplied ontology. The 
provider’s service context ontology, object proxies and registration object attributes 
are network-centric; all of them are part of the provider’s registration so they can be 
accessed via Cataloger or lookup services by any requestor on the network, e.g., 

service browsers  [11]  or  custom service UI user  agents  [29] providing interactive 
exertion-oriented programming. In SORCER, using these zero-install service UIs, the 
user can define data for downloaded ontology and create a task/job to be executed on 
the virtual metacomputer.



776  Michael Sobolewski 

Individual  Providers,  in particular  Taskers and  Jobbers, implement their 
own  exert(Exertion, Transaction) methods according to their service 
semantics and control strategy; in SORCER implemented by ServiceTasker and 
ServiceJobber respectively. SORCER specific domain providers either subclass 

ServiceTasker or  ServiceJobber,  or  by dependency  injection   (using  Jini 
configuration methodology) configure either one with one of 12 proxying methods 
developed in SORCER. In general, many different types of taskers and jobbers  can 
be used in SORCER at the same time (currently one  ServiceTasker and one 
ServiceJobber implementation  exists)  and  exertions  via  their  signatures  will 
make appropriate runtime choices as to what virtual metacomputer to run.

Invoking an exertion, let’s say ext, is similar to invoking an executable program 
ext.exe at the command prompt. If we use the Tenex C shell (tcsh), invoking the 
program is equivalent to: tcsh ext.exe, i.e., passing the executable ext.exe to 
tcsh. Similarly, to invoke a metaprogram using FMI, in this case the exertion ext, 
we call  ext.exert(null) if  no transactional  semantics  is  required.  Thus,  the 
exertion is the metaprogram and the network shell at the same time, which might first 
come as a surprise, but close evaluation of this fact shows it to be consistent with the 
meaning of object-oriented federated programming. Here, the virtual metacomputer is 
a federation that does not exist when the exertion is created. Thus, the notion of the 
virtual metacomputer is enclosed in the exertion exemplified by FMI.

The observation concluding that the exertion is the metaprogram and the network 
shell at the same time brings us back to the distribution transparency issue discussed 
in Section 2. It might appear that  Exertion objects are network wrappers as they 

hide  network  intrinsic  unpredictable  behavior.  However,  Exertions are  not 
distributed objects, as do not implement any remote interfaces; they are local objects. 
Servicers are  distributed  objects  and  there  are  many  types  of  Servicers 
addressing  different  aspects  of  networking.  The  network  intrinsic  unpredictable 
network  behavior  is  addressed  by  the  SORCER  object-oriented  distributed 
infrastructure:  Taskers,  Jobbers,  Catalogers,  Spacers,  FileStorers, 

Authenticators,  Authorizers,  Policers,  etc.  The  Servicer-based 
infrastructure facilitates exertion-oriented programming and concurrent metaprogram 
execution  using  the  presented  FMI  and  allows  for  constructing  reliable  object 
oriented distributed systems from unreliable distribute components - Servicers.

5 Conclusions

A distributed system is not just a collection of distributed objects—it’s the network of 
dynamic objects.  From an object-oriented  point  of  view,  the  network  of  dynamic 
objects  is  the  problem  domain of  object-oriented  distributed  programming  that 
requires relevant abstractions in the solution space. The exertion-based programming 
introduces the new RPC abstraction with  service providers and  exertions  instead of 
object-oriented  conventional  objects and  messages.  Service  providers  can  register 
proxies,  including  smart  proxies,  via  dependency  injection  using  twelve  methods 
investigated in SORCER. Executing a top-level exertion means forming a dynamic 
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federation  of  currently  available  providers  in  the  network  that  collaboratively 
processes service contexts of all nested exertions.  Services are invoked by passing 
exertions on to providers indirectly via service object proxies that in fact are access 
proxies  allowing  for  service  providers  to  enforce  a  security  policy  on  access  to 
services. When a permission is granted, then the operation defined by an exertion’s 
PROCESS signature is invoked by reflection. FMI allows for the P2P environment via 
the Servicer interface, extensive modularization of Exertions and Exerters, 
and extensibility from the triple  command design pattern.  The presented FMI has 
been successfully deployed and tested in multiple concurrent engineering and large-
scale distributed applications.
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