
Convergence, M. Sobolewski & R. Kolonay CE2011

The Convergence of Three Languages for Transdisciplinary
Computing

Michael Sobolewski1,2, Raymond Kolonay1

1 Air Force Research Laboratory
Wright-Patterson Air Force Base, Ohio 45433

2 United Technology Corporation
Dayton, Ohio 45433
sobol@sorcersoft.org

Keywords: concurrent engineering, metacomputing, SOA, service-oriented
programming

Abstract: Each computing system requires a platform that allows software to run.
The computing platform includes a programming environment to create applications
with a coherent operating system and processor. Each platform’s programming
environment reflects a relevant abstraction, and usually the type and quality of the
abstraction implies the complexity of problems we are able to solve. The Service
ORiented Computing EnviRonment (SORCER) targets service abstractions for
transdisciplinary complexity with support for high performance computing. SORCER
service-commands are expressed in Exertion-Oriented Language (EOL) in
convergence with two other languages: Variable-Oriented Language (VOL) and
Variable-oriented Modeling Language (VML). The SORCER operating system
supports the two-way convergence of three programming models for transdisciplinary
computing. On one hand, EOP is uniformly converged with VOP and VOM to express
an explicit network-centric service-oriented computation process in terms of other
implicit (inter/intra) process expressions. On the other hand, VOM and VOP are
uniformly converged with EOP to express an explicit declarative service model with
multifidelity and multidisciplinary features in terms of other implicit (intra/inter)
process expressions including network-centric service federations.

1. Introduction

In transdisciplinary computing systems each service provider in the collaborative
federation performs its services in an orchestrated workflow. Once the collaboration is
complete, the federation dissolves and the providers disperse and seek other
federations to join. The approach is network centric in which a service is defined as an
independent self-sustaining entity—remote service provider—performing a specific
network activity. These service providers have to be managed by a relevant operating

Convergence, M. Sobolewski & R. Kolonay

system with commands for expressing interactions of providers in the network.
The reality at present, however, is that transdisciplinary computing environments

are still very difficult for most users to access, and that detailed and low-level
programming must be carried out by the user through command line and script
execution to carefully tailor jobs on each end to the resources on which they will run,
or for the data structure that they will access. This produces frustration on the part of
the user, delays in the adoption of service-oriented techniques, and a multiplicity of
specialized “cluster/grid/cloud-aware” tools that are not, in fact, aware of each other
which defeats the basic purpose of the cluster/grid/cloud.

A computer as a programmable device that performs symbolic processing,
especially one that can process, store and retrieve large amounts of data very quickly,
requires a computing platform (runtime) to operate. Computing platforms that allow
software to run on the computer require a processor, operating system, and
programming environment with related runtime libraries and user agents. Therefore,
the metacomputer requires a platform that describes a kind of networking framework
to allow software to run utilizing virtual distributed resources. Different platforms of
metacomputers can be distinguished along with corresponding types of virtual
network processors.

We consider a metaprogram as the process expression of hierarchically organized
collaboration of remote component programs. Its service-oriented operating system
makes decisions about where, when, and how to run these components. The
specification of the service collaboration is a metaprogram� a program that
manipulates other programs remotely as its data. Nowadays the similar computing
abstraction is usually applied to the program executing on a single computer as to the
program executing in the network of computers, even though the executing
environments (platforms) are structurally completely different. Most, so called,
service-oriented programs are still written using software languages such as
FORTRAN, C, C++ (compiled into native processor code), Java, Smalltalk (compiled
into intermediate code), and interpreted languages such as Perl and Python, the way it
usually works on a single host. The current trend is to have these programs and scripts
define remote computational modules as service providers.

Instead of moving executable files around the computer networks we can
autonomically provision the corresponding computational components (executable
codes) as uniform metainstructions of the service metaprocessor. Now we can submit
a metaprogram (service command) in terms of metainstructions (services) to the
metacompute OS that manages dynamic federations of service providers and related
resources, and enables the collaboration of the required service providers according to
the metaprogram definition with its own control strategy. We treat services as service
types (e.g. a form of the Java interface) and service providers as service instances
implementing that service types. A provider can implement multiple service types, so
can provide multiple services.

One of the first metacompute platforms was developed under the sponsorship of
the National Institute for Standards and Technology (NIST)—the Federated Intelligent
Product Environment (FIPER) (Sobolewski, 2002). The goal of FIPER is to form a
federation of distributed service objects that provide engineering data, applications,

1

Convergence, M. Sobolewski & R. Kolonay CE2011

and tools on a network. A highly flexible software architecture had been developed for
transdisciplinary computing computing (1999-2003), in which engineering tools like
computer-aided design (CAD), computer-aided engineering (CAE), product data
management (PDM), optimization, cost modeling, etc., act as both service providers
and service requestors.

The Service-ORiented Computing EnviRonment (SORCER) (Sobolewski, 2008-
2011) builds on the top of FIPER to introduce a metacomputing operating system with
all system services necessary, including service management (rendezvous services), a
federated file system, and autonomic resource management, to support service-object
oriented metaprogramming. It provides an integrated solution for complex
transdisciplinary applications (see Fig. 1) that require multiple complex solutions
across multiple disciplines combined at runtime into a transdisciplinary one. The
SORCER metacomputing environment adds an entirely new layer of abstraction to the
practice of metacomputing—exertion-oriented (EO) programming with a federated
method invocation (FMI). The EO programming makes a positive difference in
service-oriented programming primarily through a new metaprogramming abstraction
as experienced in many service-oriented computing projects including systems
deployed at GE Global Research Center, GE Aviation, Air Force Research Lab,
SORCER Lab, and SORCER partners in China and Russia.

The reminder of this paper is organized as follows Section 2 describes briefly the
SORCER metacomputing platform; Section 3 describes exertion-oriented
programming; Section 4 describes var-oriented programming and var-oriented
modeling; finally Section 5 concludes with final remarks and comments.

2

Figure 1. By providing easy-to-use, self-discovering services representing domain knowledge
(data), tools (operations), and related technologies (control) with metaprogramming
methodology, the SORCER environment reduces integration and deployment costs, facilitate
productivity, increases research collaboration, and advances the development and acceptance
of secure and fault tolerant transdisciplinary concurrent engineering solutions.

Convergence, M. Sobolewski & R. Kolonay

2. Service-object Oriented Platform: SORCER

The Service-ORiented Computing EnviRonment (SORCER) is a federated service-to-
service (S2S) metacomputing environment that treats service providers as network
peers with well-defined semantics of a federated service-object oriented architecture
that is based on the federated method invocation (FMI) (Sobolewski, 2007). It
incorporates Jini semantics of services (“Jini Architecture”, n.d.) in the network and
the Jini programming model (Edwards, 2000) with explicit leases, distributed events,
transactions, and discovery/join protocols. While Jini focuses on service management
in a networked environment, SORCER is focused on EO programming and the
execution environment for exertions (see in Fig. 2). The SORCER programming
environment creates the unifying representation for three concrete programming
syntaxes: the SORCER Java API described in (Sobolewski, 2008a), and the graphical
form described in (Sobolewski and Kolonay, 2006), and the functional composition
form presented in this paper. The notation of functional composition has been
developed so far for three related languages: Exertion-Oriented Language (EOL), Var-
Oriented Language (VOL), and Var-oriented Modeling Language (VML) that are
usually complemented with the Java/Groovy object-oriented syntax. In the following
two sections we will describe the basic syntax of these three languages. More details
on EOL can be found in (Sobolewski, 2010b).

3

Figure 2. The SORCER layered architecture, where C0-C5 (carrier)—the metaprocessor with
its service cloud at C4 and C3, platform cloud at C2 and C1, M (management)—SORCER
operating system, D (domain)—service requestors; where V1-V4 stands virtualization of the
corresponding layer.

Convergence, M. Sobolewski & R. Kolonay CE2011

3. Expressing a Process of Federating Processes: Exertion-oriented
Programming

In language engineering—the art of creating languages—a metamodel is a model to
specify a language. An exertion is a metamodel to model connectionist process
expression that models behavioral phenomena as the emergent processes of
interconnected networks of service providers. The central exertion principle is that a
process can be described by the interconnected federation of simple and often uniform
end efficient service providers that compete with one another to be exerted for a
provided service in the dynamically created federation.

Exertion-oriented programming (EOP) is a service-oriented programming
paradigm using service providers and service commands. A service command—
exertion—is interpreted by the SORCER Operating System (SOS) and represented by
the data structure that consist of a data context, multiple service signatures, and a
control context together with their interactions—to design distributed applications as
service collaborations. In EOP a service signature determines a service invocation on
a provider. The signature usually includes the service type, operation of the service
type, and expected quality of service (QoS). While exertion's signatures identify
(match) the required collaborating providers (federation), the control context defines
for the SOS how and when the signature operations are applied to the data context.
Please note that the service type is the classifier of service providers with respect to its
behavior (interface), but the signature is the classifier of service providers with respect
to the invocation (operation in the interface) and service deployment defined by its
QoS.

An exertion is an expression of a distributed process that specifies for the SOS
how a service collaboration is actualized by a collection of providers playing specific
roles used in a specific way (Sobolewski, 2008c). The collaboration specifies a
collection of cooperating providers—the exertion federation—identified by the
exertion's signatures. Exertions encapsulate explicitly data, operations, and control
strategy for the collaboration. The signatures are dynamically bound to corresponding
service providers—members of the exerted collaboration.

The exerted members in the federation collaborate transparently according to their
control strategy managed by the SOS. The SOS invocation model is based on the
Triple Command Pattern (Sobolewski, 2007) that defines the federated method
invocation (FMI).

A task exertion (or simply a task) is an elementary service command executed by a
single service provider or its small-scale federation. The task federation is managed
by the receiving provider for the same service context used by all providers in the
federation. A job exertion is a composite service command defined hierarchically in
terms of tasks and other jobs, including control flow exertions (Sobolewski, 2008a). A
job exertion is a kind of command script, that is similar conceptually to UNIX script,
but with service commands, to execute a large-scale federation. The job federation is
managed by one of two SOS rendezvous providers, (Jobber or Spacer) but the task
federation by the receiving provider. Either a task or job is a service-oriented program
that is dynamically bound by the SOS to all required and currently available or

4

Convergence, M. Sobolewski & R. Kolonay

provisioned on-demand service providers.
The exertion's data called data context describes the data that tasks and jobs work

on. A data context, or simply a context, is a data structure that describes service
provider ontology along with related data (Sobolewski, 2008a). Conceptually a data
context is similar in structure to a files system, where paths refer to objects instead to
files. A provider‘s ontology (object paths) is controlled by the provider vocabulary
that describes data structures in a provider's namespace within a specified service
domain of interest. A requestor submitting an exertion to a provider has to comply
with that ontology as it specifies how the context data is interpreted and used by the
provider.

The exertion collaboration defines its interaction. The exertion interaction
specifies how context data flows between invocations of signature operations that are
sent between service providers in a collaboration to perform a specific behavior. The
interaction is defined by control contexts of all component exertions. From the
computing platform point of view, exertions are entities considered at the
programming level, interactions at the operating system level, and federations at the
processor level. Thus, exertions are programs that define distributed collaborations on
the service processor The SOS manages collaborations as interactions on its virtual
service processor—the dynamically formed service federations.

The primary difference between exertion and federation is management and
implementation. The exertion and the federation distinctions are based on the
analogies between the company management and employees: the top-level exertion
refers to the central control (the Chairman of company) of the behavior of a
management system (the Chairman's staff vs. component exertions), while federation
refers to an implementation system (the company employees vs. the service providers)
which operates according to management rules (FMI), but without centralized control.

In SORCER the provider is responsible for deploying the service on the network,
publishing its proxy to one or more registries, and allowing requestors to access its
proxy. Providers advertise their availability on the network; registries intercept these
announcements and cache proxy objects to the provider services. The SOS looks up
proxies by sending queries to registries and making selections from the available
service types. Queries generally contain search criteria related to the type and quality
of service. Registries facilitate searching by storing proxy objects of services and
making them available to requestors. Providers use discovery/join protocols to publish
services on the network; the SOS uses discovery/join protocols to obtain service
proxies on the network. While the exertion defines the orchestration of its service
federation, the SOS implements the service choreography in the federation defined by
its FMI.

Three forms of EOP have been developed: Exertion-oriented Java API, interactive
graphical, and textual programming. Exertion-oriented Java API is presented in
(Sobolewski, 2002 and 2008a). Graphical interactive exertion-oriented programming
is presented in (Sobolewski and Kolonay, 2006). Details regarding textual EOP and
two examples of simple EO programs can be found in (Sobolewski, 2010b) and
(Sobolewski, 2011).

5

Convergence, M. Sobolewski & R. Kolonay CE2011

4. Expressing a Process of Converging Processes: Var-oriented Programming
and Var-oriented Modeling

In every computing process variables represent data elements and the number of
variables increases with the increased complexity of problems being solved. The value
of a computing variable is not necessarily part of an equation or formula as in
mathematics. In computing, a variable may be employed in a repetitive process:
assigned a value in one place, then used elsewhere, then reassigned a new value and
used again in the same way. Handling large sets of interconnected variables for
transdisciplinary computing requires adequate programming methodologies.

Var-Oriented Programming (VOP) is a programming paradigm using service
variables called "vars"—data structures defined by the triplet <value, evaluator,
filter> together with a var composition of evaluator's dependent variables—to design
var-oriented multifidelity compositions. It is based on dataflow principles that
changing the value of a var should automatically force recalculation of the values of
vars, which depend on its value. VOP promotes values defined by evaluators/filters to
become the main concept behind any processing.

Var-Oriented Modeling (VOM) is a modeling paradigm using vars in a specific
way to define heterogeneous multidisciplinary var-oriented models, in particular
large-scale multidisciplinary analysis models including response, parametric, and
optimization component models. The programming style of VOM is declarative;
models describe the desired results of the program, without explicitly listing
command or steps that need to be carried out to achieve the results. VOM focuses on
how vars connect, unlike imperative programming, which focuses on how evaluators
calculate. VOM represents models as a series of interdependent var connections, with
the evaluators/filters between the connections being of secondary importance.

The SORCER metamodeling architecture (Sobolewski, 2011) is the unifying
representation for three concrete programming syntaxes: the SORCER Java API
described in (Sobolewski, 2008a), the functional composition form, (Sobolewski,
2010b and 2011), and the graphical form described in (Sobolewski and Kolonay,
2006). The functional composition notation has been used for Var-Oriented Language
(VOL) and Var-oriented Modeling Language (VML) that are usually complemented
with the Java object-oriented syntax.

The fundamental principle of functional programming is that a computation can be
realized by composing functions. Functional programming languages consider
functions to be data, avoid states, and mutable values in the evaluation process in
contrast to the imperative programming style, which emphasizes changes in state
values. Thus, one can write a function that takes other functions as parameters,
returning yet another function. Experience suggests that functional programs are more
robust and easier to test than imperative ones.

Not all operations are mathematical functions. In nonfunctional programming
languages, "functions" are subroutines that return values while in a mathematical
sense a function is a unique mapping from input values to output values. In SORCER
the special type of variable called var allows one to use functions, subroutines, or
coroutines in the same way. A value of var can be associated with mathematical

6

Convergence, M. Sobolewski & R. Kolonay

function, subroutine, coroutine, object, or any local or distributed data. The concept of
var links the three languages VOL, VML, and EOL into a uniform service-oriented
programming model that combines federating services (EOP) with other type of
process execution.

The semantics of a variable depends on the process expression formalism:
1. A variable in mathematics is a symbol that represents a quantity in a

mathematical expression.
2. A variable in programming is a symbolic name associated with a value.
3. A variable in object-oriented programming is a set of object’s attributes

accessible via operations called getters.
4. A var in service-oriented programming is a triplet <value, evaluator, filter>,

where:
a) a value is a valid quantity in an expression; a value is invalid when the

current evaluator or filter is changed, evaluator's arguments change, or the
value is undefined;

b) an evaluator is a service with the argument vars that define the variable
dependency composition; and

c) a filter: is a getter operation.
Var-oriented programming is the programming paradigm that treats any

computation as the VFE triplet: value, filter (pipeline of filters), and evaluator (see
Fig. 3). Evaluators and filters can be executed locally or remotely, sequentially or
concurrently. An evaluator may use a differentiator to calculate the rates at which the
var quantities change. Multiple associations of evaluator-filter can be used with the
same var (multifidelity). The VFE paradigm emphasizes the usage of multiple pairs of
evaluator-filter (called var evaluations) to define the value of var. The semantics of

7

Figure 3. The var structure: value/evaluator/filter. Vars are
indicated in blue color. The basic var y1, z=y1(x1, x2, x3), depends
on its argument vars and derivative vars.

Convergence, M. Sobolewski & R. Kolonay CE2011

the value, whether the var represents a mathematical function, subroutine, coroutine,
or just data, depends on the evaluator and filter currently used by the var.

A service in VOL is the work performed by a variable’s evaluator-filter pair.
Evaluators for dependent vars, that depend on their argument vars, define:

1. a var composition via the var arguments of its evaluator
2. multiple processing services (mutifidelity)
3. multiple differentiation services (mutifidelity)
4. evaluators can execute commands (executable codes), object-oriented services

(method invocations), and exertions (exerting service federations).
Thus, in the same process various forms of services (intra and interprocess) can be
mixed within the same process expression in VOL. Also, the fidelity of var values can
change as it depends on a currently used evaluator. Please note that vars used in data
contexts of exertions extend EOP for the flexible service semantics defined by VOP.

The variable evaluation strategy is defined as follows: the var value is returned if
is valid, otherwise the current evaluator determines the variable’s raw value (not
processed or subjected to analysis), and the current pipeline of filters returns the
output value from the evaluator result and makes that value valid. Evaluator's raw
value may depend on other var arguments and those arguments in turn can depend on
other argument vars and so on. This var dependency chaining is called the var
composition and provides the integration framework for all possible kinds of
computations represented by various types of evaluators including exertions via
exertion evaluators.

In general, it is perceived that the languages used for either modeling or
programing are different. However, both are complementary views of process
expression and after transformation and/or compilation both need to be executable. An
initial model, for example an initial design of aircraft engine, can be imprecise, not
executable, at high level with informal semantics. However its detailed model
(detailed design) has to be precise, executable, low level, with execution semantics.
Differences between modeling and programming that traditionally seemed very
important are becoming less and less distinctive. For example models created with
Executable UML (Mellor and Balcer, 2002) are precise and executable.

Data contexts (objects implementing Context interface) with specialized
aggregations of vars are called var-models. Three types of analysis models: response,
parametric, and optimization have been studied already (Sobolewski, 2010b). These
models are expressed in VML using functional composition and/or Java API for var-
oriented modeling.

The modularity of the VFE framework, reuse of evaluators and filters, including
exertion evaluators, in defining var-models is the key feature of var-oriented
modeling. (VOM) The same evaluator with different filters can be associated with
many vars in the same var-model. VOM integrates var-oriented modeling with other
types of computing via various types of evaluators. In particular, evaluators in var-
models can be associated with commands (executables), messages (objects), and
services (exertions).

Var-models support multidisciplinary and multifidelity traits of transdisciplinary
computing. Var compositions across multiple models define multidisciplinary

8

Convergence, M. Sobolewski & R. Kolonay

problems; multiple evaluators per var and multiple differentiators per evaluator define
their multifidelity. They are called amorphous models. For the same var-model an
alternative set of evaluators/filters (another fidelity) can be selected at runtime to
evaluate a new particular process ("shape") of the model and quickly update the
related computations in the right evolving or new direction.

Let's consider the Rosen-Suzuki optimization problem to illustrate the basic VML,
VOL, and EOL concepts, where:

1. design vars: x1, x2, x3, x4
2. response vars: f, g1, g2, g3,

and
3. f = x1^2-5.0*x1+x2^2-5.0*x2+2.0*x3^2-21.0*x3+x4^2+7.0*x4+50.0
4. g1 = x1^2+x1+x2^2-x2+x3^2+x3+x4^2-x4-8.0
5. g2 = x1^2-x1+2.0*x2^2+x3^2+2.0*x4^2-x4-10.0
6. g3 = 2.0*x1^2+2.0*x1+x2^2-x2+x3^2-x4-5.0

The goal is then to minimize f subject to
g1 <= 0, g2 <= 0, and g3 <= 0.

In VML this case is expressed by the following mogram:

int designVarCount = 4;
int responseVarCount = 4;
OptimizationModel model = optimizationModel(

"Rosen-Suzuki Model",
designVars(vars(loop(designVarCount),

"x", 20.0, -100.0, 100.0)),
responseVars("f"),
responseVars(loop(responseVarCount-1), "g"),
objectiveVars(var("fo", "f", Target.min)),
constraintVars(

var("g1c", "g1", Relation.lte, 0.0),
var("g2c", "g2", Relation.lte, 0.0),
var("g3c","g3", Relation.lte, 0.0)));

configureAnalysisModel(model);

Response vars f, g1, g2, g3 are configured by the function
configureAnalysisModel defined in VOL, for example var f is configured as
follows:

var(model, "f",
evaluator("fe1",

"x1^2- 5.0*x1+x2^2-5.0*x2+2.0
*x3^2-21.0*x3+x4^2+7.0*x4+50.0"),

args("x1", "x2", "x3", "x4"));

The model above can be provisioned directly in SORCER as a servicer provider and
used by the space exploration provider of the Exploration type that also uses the
CONMIN optimization (CONMIN, n.d) service provider of the Optimization type.
The requestor creates the exertion opti as follows:

9

Convergence, M. Sobolewski & R. Kolonay CE2011

// Create an optimization data context

Context exploreContext = exploreContext(
"Rosen-Suzuki context",
varsInfo(

varInfo("x1", 1.0),
varInfo("x2", 1.0),
varInfo("x3", 1.0),
varInfo("x4", 1.0)),

strategy(new ConminStrategy(
new File(System.getProperty(

"conmin.strategy.file")))),
dispatcher(

sig(null, RosenSuzukiDispatcher.class,
Process.INTRA)),

model(sig("register",
OptimizationModeling.class,

"Rosen-Suzuki Model")),
optimizer(sig("register",

Optimization.class,
"Rosen-Suzuki Optimizer")));

// Create a task exertion

Task opti= task("opti",
sig("explore", Exploration.class,

"Rosen-Suzuki Explorer"),
exploreContext);

then executes the opti exertion:

// Execute the exertion and log results

logger.info(">>>>>>>>>>>>> results: " + context(exert(opti));

with the exertion's output data context logged as follows:

[java] Objective Function fo = 6.002607805900986
[java] Design Variable Values
[java] x1 = 2.5802964087086235E-4

x2 = 0.9995594642481355
x3 = 2.000313835134211
x4 = -0.9986692050113675

[java] Constraint Values
[java] g1c = -0.002603585246998996

g2c =-1.0074147118087602
g3c = 4.948009193483927E-7

[java] ITERATIONS
[java] Number of Objective Evaluations = 88
[java] Number of Constraint Evaluations = 88

10

Convergence, M. Sobolewski & R. Kolonay

[java] Number of Objective
Gradient Evaluations = 29

[java] Number of Constraint Gradient
Evaluations = 29

The exploreContext defines initialization of design vars (varsInfo), the
optimization strategy, and the exploration dispatcher with two required services—two
signatures for: optimizer and model. The context then is used to define the exertion
task opti with the signature for exploration service named Rosen-
Suzuki Explorer of the Exploration type. For simplicity, signatures above do
not specify QoS for the specified providers. To illustrate the provider QoS concept
(Rubach and Sobolewski, 2009), for example, the optimizer's signature can be
expressed as follows:

sig("register", Optimization.class, qosCtx))

where the qosCtx context may be defined as follows:

QosContext qosCtx = qos(
serviceProvider(entry(

"Name","Rosen-Suzuki Optimizer"),
libs(entry("Name","Conmin"),

entry("Class", NativeLibrarySupport.class),
entry("FileName", "conmin.so"))),

objectPlatform(entry("Name","Java"),
entry("Class", J2SESupport.class),
entry("Version", "1.5.*")),

commandPlatform(
processor(entry("Available", "2"),

entry("Architecture", "x86")),

memory(entry("Capacity", "4G"),
entry("Available", "2G")),

disk(entry("Capacity", "20G"),

entry("Available", "4G"))),
sla(entry("cost", 200),

entry("time", 5000),
entry("CPU", range(0.0, 0.9)),
entry("Memory", range(0.2, 0.5)),
entry("ProcAvail_CPU_Util", range(1.5, 2.0),
metric("ProcAvail_CPU_Util",

impl("result = Double.parseDouble(proc_avail)
* cpu_util",
args(var("proc_avail", processor(

entry("Available", ""))),
var("cpu_util", sla(

entry("CPU", null)))))),
authorization(entry("estimatedDuration", 30000l),

entry("priority", range(5,10)),
execDate("2011-01-10 00:00:00",

"2011-01-11 12:00:00"),

11

Convergence, M. Sobolewski & R. Kolonay CE2011

project(entry("name","RS"),
entry("manager","Smith"),
entry("description", "RS optimization")),

organization(entry("name", "TTU"),
entry("department", "CS"),
entry("description","SORCER Testbed"))));

The qosCtx context specifies for the optimizer the required QoS: for the provider by
operator serviceProvider, for the object platform by operator objectPlatform,
for the command platform by operator commandPlatform, for the expected SLA by
operator sla and authorization by authorization for the service requestor.

5. Conclusions

As we move from the problems of the information era to more complex problems
of the molecular era, it is becoming evident that new programming languages for
transdisciplinary computing are required. These languages should reflect the
complexity of metacomputing problems we are facing in service-oriented computing,
for example, concurrent engineering processes of the collaborative design by
hundreds of people working together and using thousands of programs written already
in software languages (languages for computers) that are dislocated around the globe.
The transdisciplinary design of an aircraft engine or even a whole air vehicle requires
large-scale high performance metacomputing systems handling anywhere-anytime
executable codes represented by software languages.

Domain-specific languages (DSL) are for humans, intended to express specific
complex problems and related solutions. Three programming languages for
transdisciplinary computing are described in this paper: VOL, VML, and EOL. These
languages are interpreted by the SOS shell. The essential differences between the
UNIX operating system, and the SOS are illustrated in Table 1.

As complexity of problems being solved increases continuously, we have to
recognize the fact that in transdisciplinary computing the only constant is change. The
concept of the evaluator-filter pair in the VFE framework provides the uniform
service-orientation for all computing and metacomputing needs with various
applications, tools, utilities, and exertions as services.

The SORCER operating system supports the two-way convergence of three
programming models for transdisciplinary computing. On one hand, EOP is uniformly
converged with VOP and VOM to express an explicit network-centric service-oriented
computation process in terms of other implicit (inter/intra) process expressions (the
network is the computer). On the other hand, VOM and VOP are uniformly converged
with EOP to express an explicit declarative transdisciplinary process in terms of other
implicit (intra/inter) process expressions including exertions (the computer is the
network).

The SORCER platform with three layers of converged programming: exertion-
oriented (for service collaborations), var-oriented (for var-oriented multifidelity
compositions), and var-oriented modeling (multidisciplinary var-oriented models) has

12

Convergence, M. Sobolewski & R. Kolonay

been successfully deployed and tested in multiple concurrent engineering and large-
scale distributed applications including large scale, distributed, dynamic fidelity
aeroelastic analysis and optimization (Kolonay & Sobolewski, 2011).

Features UNIX SOS

Data File/File system Object/Data context

Data flow Pipes Data context pipes

Interpreter e.g. C Shell SOS shell

Programming language Shell scripting
- procedural

VOL, VML, EOL
– service-oriented (VOL)
– service modeling (VML)
– service-object oriented (EOL)
– interactive visual programming
–Java API

System (SW) language C Java/Jini/Rio

Table 1. UNIX OS vs. SORCER OS. Pipes in UNIX are between processes, in SORCER they
are between data contexts; instead of UNIX pipeline SORCER defines a workflow by
composition of exertions; the UNIX shell is local but the SOS shell is a network shell.

Acknowledgments

This work was partially supported by Air Force Research Lab, Air Vehicles
Directorate, Multidisciplinary Science and Technology Center, the contract number
F33615-03-D-3307, Algorithms for Federated High Fidelity Engineering Design
Optimization.

13

References
Edwards, W.K. (2000) Core Jini, 2nd ed., Prentice Hall
FIPER: Federated Intelligent Product EnviRonmet. Available at:

http://sorcersoft.org/fiper/fiper.html. Accessed on: April 24, 2010.
Foster I.; Kesselman C. & Tuecke S. (2001). The Anatomy of the Grid: Enabling Sca-

lable Virtual Organizations, International J. Supercomputer Applications,
15(3)

Jini Architecture Specification. Available at: http://www.jini.org/wiki/Jini_Architec-
ture_Specification. Accessed on: April 24, 2010

Kolonay, R.M. & Sobolewski, M. (2011). Service ORiented Computing EnviRon-
ment (SORCER) for Large Scale, Distributed, Dynamic Fidelity Aeroelastic
Analysis & Optimization. International Forum on Aeroelasticity and Structural
Dynamics 2011 (IFASD2011), 26-30 June, Paris, France.

Linthicum, D.S. (2009). Cloud Computing and SOA Convergence in Your Enterprise:
A Step-by-Step Guide, Addison-Wesley Professional, ISBN-10 0136009220

Mellor, S.J. And Balcer, M.J. (2002). A Foundation for Model-driven Architecture.
Boston : Addison-Wesley, 2002.

Metacomputing: Past to Present, Retrieved April 24, 2010, from: http://archive.nc-
sa.uiuc.edu/Cyberia/MetaComp/MetaHistory.html

Rubach, P. & Sobolewski, M. (2009). SERVME: SLA-Based QoS Framework for Fe-
derated Computing Environments, to be published in the Proceedings of the
Enterprise Computing Conference - EDOC, IEEE Computer Society

Sobolewski M. (2002). Federated P2P services in CE Environments, Advances in
Concurrent Engineering, A.A. Balkema Publishers, 2002, pp. 13-22

Sobolewski M., Kolonay R. (2006). Federated Grid Computing with Interactive Servi-
ce-oriented Programming, International Journal of Concurrent Engineering:
Research & Applications, Vol. 14, No 1, pp. 55-66

Sobolewski M. (2007). Federated Method Invocation with Exertions, Proceedings of
the IMCSIT Conference, PTI Press, ISSN 1896-7094, pp. 765-778

Sobolewski, M. (2008a). Exertion Oriented Programming, IADIS, vol. 3 no. 1, pp.
86-109, ISBN: ISSN: 1646-3692

Sobolewski, M. (2008b) SORCER: Computing and Metacomputing Intergrid, 10th In-
ternational Conference on Enterprise Information Systems, Barcelona, Spain
(2008). Available at:
http://sorcer.cs.ttu.edu/publications/papers/2008/C3_344_Sobolewski.pdf.

Sobolewski, M. (2008c). Federated Collaborations with Exertions, 17h IEEE Interna-
tional Workshop on Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE), pp.127-132.

Sobolewski, M. (2009). "Metacomputing with Federated Method Invocation", Ad-
vances in Computer Science and IT, edited by M. Akbar Hussain, In-Tech, in-
techweb.org, ISBN 978-953-7619-51-0, s. 337-363. Available at: http://sciyo.-
com/articles/show/title/metacomputing-with-federated-method-invocation

Sobolewski, M. (2010a) “Object-Oriented Metacomputing with Exertions,” Hand-
book On Business Information Systems, A. Gunasekaran, M. Sandhu (Eds.),
World Scientific, ISBN: 978-981-283-605-2

http://sorcersoft.org/fiper/fiper.html

Convergence, M. Sobolewski & R. Kolonay

Sobolewski, M., (2010b, keynote). Exerted Enterprise Computing: From Protocol-O-
riented Networking to Exertion-Oriented Networking, R. Meersman et al.
(Eds.): OTM 2010 Workshops, LNCS 6428, 2010, Springer-Verlag Berlin Hei-
delberg 2010, pp. 182– 201.

Sobolewski, M., (2011, keynote), Provisioning Object-oriented Service Clouds for
Exertion-oriented Programming. The 1st International Conference on Cloud
Computing and Services Science, CLOSER 2011, Noordwijkerhout, the Ne-
therlands, 7-9 May 2011, SSRI, Springer-Verlag.

SORCERsoft. Available at: http://sorcersoft.org. Accessed on: April 24, 2010.
SORCER Research Topics. Available at: http://sorcersoft.org/theses/. Accessed on:

April 24, 2010

15

http://sorcersoft.org/theses/
http://sorcersoft.org/

	1. Introduction
	2. Service-object Oriented Platform: SORCER
	3. Expressing a Process of Federating Processes: Exertion-oriented Programming
	4. Expressing a Process of Converging Processes: Var-oriented Programming and Var-oriented Modeling
	5. Conclusions
	Acknowledgments

	References

