
SLA-BASED ASYNCHRONOUS COORDINATION IN METACOMPUTING
ENVIRONMENTS

Department of Business Informatics
Warsaw School of Economics

Al. Niepodległości 162
02-554 Warszawa, Poland

email: pawel.rubach@sgh.waw.pl

ABSTRACT
Federated metacomputing environments allow requesters
to dynamically invoke services offered by collaborating
providers in the virtual service network. They evolve into
metaoperating systems that form an intermediary layer be-
tween metaprograms - programs written in terms of other
programs - and the virtual metacomputer composed of col-
laborating services. These systems require resource man-
agement to efficiently handle the assignment of providers
to customer’s requests and to offer high reliability and
SLA guarantees. This paper presents the SLA-based
asynchronous coordination algorithm developed within the
recently proposed SERViceable Metacomputing Environ-
ment (SERVME) capable of matching providers based on
QoS requirements and performing on-demand provisioning
of services according to dynamic requester needs. The per-
formance analysis realized on a use case of protein struc-
ture prediction shows that the new algorithm allows us to
optimize the usage of resources according to cost/time pri-
orities and may also shorten the overall execution time in
comparison to state-of-the-art methods.

KEY WORDS
Metacomputing, Tuple Spaces, SLA Negotiation, QoS,
SLA, Service-Oriented Architecture

1 Introduction

In the late 1990s grid computing emerged as a solution to
utilize distributed resources and recently the IT industry
has proposed cloud computing as a way to achieve greater
computational power that would lead towards the realiza-
tion of the utility computing concept. Since every vendor
has a different definition of the cloud, there is a lot of con-
fusion and, apart from making use of virtualization, cloud
computing does not introduce particularly many new solu-
tions at the conceptual level of distributed computing. One
of the reasons is that similarly to grids, also in the case
of clouds, the way programmers write programs has not
changed. They are still written to be executed on a single
computer. As a result, it is clear that new concepts that
reach beyond virtualized single computer platforms must
be developed.

One of such concepts is envisioned in the idea of fed-
erated metacomputing. The goal is to create a new layer
of abstraction on top of current grids, clouds and single
computer platforms, one that, in contrast to today’s so-
lutions, introduces a new paradigm that changes the way
programs are written. It is represented by the concept of
metaprograms, that is, programs written in terms of other
programs. These lower-level programs are in fact dynamic
object-oriented services. Metaprograms are not executed
by particular nodes of a cluster or a grid but instead by a
network of service providers that federate dynamically to
create a virtual metacomputer and dissolve after finalizing
the execution.

Since the introduction of UNIX, operating systems
(OS) evolved as an intermediary between the hardware and
the user and his/her applications. It is the role of the OS
to locate required libraries, allocate resources and execute
a requested program while controlling the hardware and al-
lowing others to concurrently use the computer. The same
should apply to the virtual metacomputer and metapro-
grams. There is clearly a need to create this intermediary
layer: a virtual metaoperating system (MOS).

The foundations for the concepts of metaprogram-
ming and metaoperating system were laid in the FIPER
project (Federated Intelligent Product EnviRonment) that
was realized in between 2000 and 2003 under the spon-
sorship of NIST. This work evolved into the SORCER
project (Service ORiented Computing EnviRonment) that
was led by Michael Sobolewski at Texas Tech University
and is continued today at the Air Force Research Labora-
tory, Dayton, Ohio and at the Polish-Japanese Institute of
Information Technology in Warsaw, Poland.

SORCER introduced the concept of a metaprogram
and named it exertion as well as defined the architec-
ture and basic system services that allow exertions to be
executed by the virtual metacomputer. Although sev-
eral projects concentrated on, for example, creating a dis-
tributed file system or on issues related to security, the
SORCER metacomputing environment still could not be
regarded as a real metaoperating system because it lacked
one of the crucial elements of an operating system: re-
source management.

This lacking element has been lately proposed in

Proceedings of the IASTED International Conference

February 15 - 17, 2011 Innsbruck, Austria
Parallel and Distributed Computing and Networks (PDCN 2011)

DOI: 10.2316/P.2011.719-024

Pawel Rubach

198

the form of the SERViceable Metacomputing Environment
(SERVME). Previous papers [11], [12] introduced the ar-
chitecture, the SLA object model and focused on auto-
nomic SLA management and negotiation while this paper
addresses the recently developed SLA-based coordination
algorithm based on tuple spaces and shows how this algo-
rithm performs in a real-world use case.

The next sections of this paper are organized as fol-
lows: Section 2 introduces the SORCER metaoperating
system. Section 3 focuses on related research. Section 4
concentrates on the proposed coordination algorithm. Sec-
tion 5 presents briefly the deployment. Section 6 discusses
the performance and analyzes the experiments that involve
the use of the proposed algorithm. Finally, Section 7 con-
cludes the paper.

2 SORCER Metaoperating System

SORCER is a federated service-to-service (S2S) metacom-
puting environment that treats service providers as network
objects with well-defined semantics of a federated service
object-oriented architecture. It is based on Jini semantics of
services in the network and Jini programming model with
explicit leases, distributed events, transactions, and discov-
ery/join protocols. While Jini focuses on service manage-
ment in a networked environment, SORCER focuses on
exertion-oriented programming [14] and the execution en-
vironment for exertions. SORCER uses Jini discovery/join
protocols to implement its exertion-oriented architecture
(EOA) using federated method invocation [13], but hides
all the low-level programming details of the Jini model.

In EOA, a service provider is an object that accepts re-
mote messages from service requesters to execute a collab-
oration. These messages are called exertions and describe
service (collaboration) data, operations and the collabora-
tion’s control strategy. An exertion task (or simply a task)
is an elementary service request, a kind of elementary fed-
erated instruction executed by a single service provider or
a small-scale federation for the same service data. A com-
posite exertion called an exertion job (or simply a job) is
defined hierarchically in terms of tasks and other jobs, it is
a kind of a federated procedure executed by a large-scale
federation. The execution of an exertion job requires coor-
dination algorithms, in particular, the algorithm proposed
in this paper is essential when QoS guarantees are required.
The executing exertion is dynamically bound to all required
and currently available service providers on the network.
This collection of providers identified in runtime is called
an exertion federation. When the federation is formed, each
exertion’s operation has its corresponding method (code)
available on the network. Thus, the network exerts the col-
laboration with the help of the dynamically formed service
federation. In other words, we send the request onto the
network implicitly, not to a particular service provider ex-
plicitly.

The exertion federation is in fact a virtual metacom-
puter. The metainstruction set of the metacomputer con-

Figure 1. SERVME Conceptual Architecture

sists of all operations offered by all service providers in
the network. Thus, an exertion-oriented (EO) program is
composed of metainstructions with its own control strategy
and a service context representing the metaprogram data.
The service context describes the collaboration data that
tasks and jobs work on. Each service provider offers ser-
vices to other service peers on the object-oriented overlay
network. These services are exposed indirectly by oper-
ations in well-known public remote interfaces. Indirectly
means here, that you cannot invoke any operation defined
in the provider’s interface directly. These operations can
be specified in the requester’s exertion only, and the exer-
tion is passed by itself on to the relevant service provider
via the top-level Servicer interface implemented by all ser-
vice providers called servicers—service peers. Servicers
do not have mutual associations prior to the execution of
an exertion; they come together dynamically (federate) for
a collaboration as defined by its exertion. In EOA re-
questers do not have to lookup for any network provider at
all, they can submit an exertion, onto the network by call-
ing Exertion.exert(Transaction):Exertion
on the exertion. The exert operation will create a required
federation that will run the collaboration as specified in the
EO program and return the resulting exertion back to the
exerting requester. Since an exertion encapsulates every-
thing needed for the collaboration, all results of the exe-
cution can be found in the returned exertion’s service con-
texts.

Once the exertion execution is complete, the feder-
ation dissolves and the providers disperse to seek other
collaborations to join. SORCER supports also a tradi-
tional approach to grid computing where the business logic
comes from the service requester’s executable codes that
seek compute resources on the network.

Just like a regular OS, such as UNIX, SORCER has
a number of system services that enable other providers to
function in the environment. Rendezvous peers (Jobbers
and Spacers) coordinate the execution of exertion jobs. The
spacer was recently updated to accomodate the new coor-
dination algorithm and other infrastructure services were
defined within SERVME to handle resource management.
As a result SERVME forms, in fact, the resource manage-

199

Table 1. Grid computing vs. federated metacomputing

ment module of the MOS. It is responsible for: SLA nego-
tation, prioritization, on-demand provisioning and monitor-
ing of the execution of exertions and it consists of the fol-
lowing services: QosCatalog, SlaMonitor, SlaPrioritizer
and OnDemandProvisioner. The conceptual architecture of
SERVME is presented in Figure 1. Due to space limitations
a complete architecture and details regarding the aforemen-
tioned components as well as the SLA object model that
defines QoS parameters is omitted in this paper, however,
can be found in [11].

3 Related Work

Much research has been done in the area of resource al-
location in distributed environments, in particular, on the
Service Level Agreements (SLA) management of services.
However, most approaches focus either on low-level re-
source allocation in clustered environments or on grids
where computing tasks are assigned to particular nodes by
a centralized scheduler. This work introduces a new ap-
proach to resource management, where all resources avail-
able in the network are treated together and thus form the
virtual metacomputer that is capable of executing metapro-
grams. Since this approach uses a decentralized distributed
zero-configuration architecture where federations of ser-
vice providers are created on-the-fly during the execution
time, this technique poses new challenges and requires new
algorithms and a new architecture to manage its resources
in an efficient and scalable way.

A detailed comparison of the new approach with grid
technologies is presented in Table 1.

Grid computing introduced a significant number of ar-
chitectures, standards and protocols. The initial problems
of complexity were to a large extent addressed by the in-
troduction of grid/web services (WS) that allowed to solve
some integration issues by standardizing the communica-
tion protocol in the form of XML and SOAP. However, as
Sobolewski points out [15], the “one size fits all” approach
is not always the best choice, especially in the case of sci-

entific applications where often vast amounts of data must
be exchanged between services and, parsing the messages,
adds a lot of overhead. Another problem with WSs is their
lack of object orientation (interface inheritence, polimor-
phism, reflection etc.) and as a consequence lack of behav-
ioral transfer. Most current grids focus on using BPEL or
similar WS assembly techniques to invoke remote services.
BPEL can be used to pass data and control flow between
services, however, as it is built on top of WSs it suffers from
the same problems. Therefore, in contrast to the proposed
metaprogramming concept it cannot be treated as a full-
fledged programming language for distributed applications.
Besides, BPEL is not really decentralized - the process has
to run on a concrete engine and, as many practitioners ad-
mit, these engines often become bottlenecks. In contrast,
in the proposed architecture additional coordinating peers
may be started on-demand and metaprograms will automat-
ically migrate using load-balancing techniques such as the
one presented in this paper, for example.

Although grid technologies foster the use of networks
of compute nodes instead of single supercomputers, the
programming methods have not changed. As a result, most
applications are still written for use on a single computer
and grid schedulers are used to move executable code to
currently available hosts. As Sobolewski points out in [15]
this approach “...is reminiscent of batch processing in the
era when operating systems were not yet developed. A se-
ries of programs ("jobs") is executed on a computer without
human interaction or the possibility to view any results be-
fore the execution is complete.”

Apart from the SORCER project other Jini-based
metacomputing approaches were proposed by: Sunderam
et al. [16] and Johasz et al. [7], however the literature
shows no evidence of any of them creating a complete
metaoperating system and, in particular, of defining the
concept of metaprogramming.

One of the key challenges of a distributed system is
the coordination method. A number of different techniques
were researched by the grid community. For example,
Chao et al. [2] propose a centralized method using BPEL
whereas Eymann et al.[3] and Cao et al. [1] concentrate on
a decentralized agent-based approach. Another notable ex-
ample is the work of Favarim et al. [4] who propose to use
the tuple-space model for coordination. The last approach
seems most promising since its space and time indepen-
dence allow for late-binding and disconnected operation -
qualities that fit well to the decentralized service-2-service
nature of the SORCER environment. However, Favarim et
al. concentrate on traditional grids and do not include the
support for a full QoS/SLA negotiation in their approach.

The coordination algorithm proposed in this paper
follows the same idea known as space-based computing or
tuple spaces and introduced by David Gelerntner in 1985
[6]. Since then this technique was researched extensively
and implemented in java in form of the JavaSpaces. Sev-
eral extensions were proposed. For example, Khushraj et
al. [8] introduced semantic tuples and Kuhn et al. propose

200

the Extensible Tuple Model [9].
The proposed coordination technique was devel-

oped specifically to address the coordination of complex
metaprograms that require QoS guarantees. To the best of
my knowledge this is the first attempt to combine a space-
based approach with SLA contracts for the execution of
metaprograms within a distributed system.

4 Coordination Algorithms

SORCER uses two types of job coordination techniques.
The explicit Push type is one, where tasks within the ex-
ertion job are executed (pushed towards providers) by the
Jobber that calls their exert method sequentially or in
parallel depending on the control strategy. The coordina-
tion algorithm that extends this technique by introducing
QoS guarantees and SLA negotiation for Push jobs was
presented in a previous paper by Rubach and Sobolewski
[12].

A more advanced coordination technique mostly suit-
able for larger exertions uses the JavaSpaces. This ap-
proach is implemented by the Spacer rendezvous peer and
is referred to as the Pull type since the actual tasks are
pulled from the shared space by relevant service providers.

The basic handling of Pull jobs (without QoS) in
SORCER consists of the following steps. The spacer ser-
vice analyzes the job and for every inner exertion (both
tasks and jobs) it creates an envelop object that describes
the exertion to be executed. The envelop’s fields used for
matching contain the required provider’s service type (in-
terface) and a flag that defines the current state of the ex-
ecution. This envelop is dropped to the space, where it
is matched against templates prepared previously by ser-
vice providers. Those templates contain their service types.
This allows service providers to receive from the space ex-
ertions that they are able to execute. Whenever the en-
velop matches the template, it is taken from the space by
the provider that owned the matched template to avoid a
situation where a different provider executes the same ex-
ertion simultaneously. When the execution is finished the
envelop is written back to the space by the provider but its
state is updated to allow the spacer coordinating peer to
match the executed envelops. Spacer collects envelops of
executed exertions and returns the results to the requester.

The algorithms used to coordinate Pull jobs are in re-
ality more complicated due to the requirements of robust-
ness and thus the introduction of transactional semantics
and security. These issues, however, were addressed previ-
ously.

The introduction of SLA management to the execu-
tion of Pull jobs substantially changes the assumptions and
the control flow of the execution of Pull jobs. In this
case, the space is also used to match exertions to service
providers. However, the space is only used during the first
stage when SLA offers are acquired and the actual execu-
tion (the second stage) is invoked directly by the spacer
service. Consequently, the execution does not pass through

the space. This change has many implications on the coor-
dination algorithms.

4.1 SLA Negotiation in Space Computing

An overview of the SLA negotiation process for Pull jobs
is presented in Figure 2. The control flow illustrated in
this diagram starts when the top-level exertion (Pull job)
is executed by the requester and is passed to the Spacer
service for coordination. Spacer selects independent inner
exertions (1) and for every one of them creates an SLA en-
velop (described in details in Section 4.5) and writes it to
the space (2). SLA envelops are matched against templates
created earlier by service providers. Those providers that
fulfill functional requirements (offer the requested service
type) read the corresponding envelops (3) and start the pro-
cess of issuing an SLA offer. At first they call the SlaPri-
oritizer service and request a permission to execute and
the assigned priorities (4). If a permission is given (5) the
provider matches its current QoS parameter values against
QoS requirements retrieved from the envelop (6) and based
on the outcome creates an SLA offer (if all QoS require-
ments are met) or proposes an updated SLA contract (oth-
erwise). Next the provider calculates the final estimated
cost of the execution (7) and writes its offer to the space (8)
by appending it to the distributed array (see Section 4.6)
designated for this exertion.

The QoS parameters matched before issuing an SLA
offer are devided into 3 groups: System Requirements (i.e.
number and model of CPUs, OS type and version etc.),
SLA Parameter Requests (CPU usage, available memo-
ry/diskspace) and Metrics (user-defined based on other
QoS parameters). The details concerning the SLA object
model were described in: [11].

In the meantime the Spacer monitors the SLA offers
written by providers to the space and uses the algorithm
presented below to decide how to process them. This algo-
rithm has three parameters specified individually for each
exertion: MIN_OFFERS, REPEAT_TIMES and TIME-
OUT.
I = 0 ;
While I < REPEAT_TIMES Do :

Begin
START_TIME = c u r r e n t T i m e () ;
While c u r r e n t T i m e () − START_TIME < TIMEOUT And

NUM_OFFERS () < MIN_OFFERS Do :
readSLAOffersFromSpace () ;

End ;
I f NUM_OFFERS >= MIN_OFFERS Then Do :

s e l e c t B e s t O f f e r () ;
E l s e

t r y T o P r o v i s i o n P r o v i d e r () ;
I f PROVISION_SUCCEED And I = REPEAT_TIMES − 1 Then

I = I −1;
I ++;

End ;
Done ;

As shown above, the Spacer service monitors the
number of available SLA offers for a given exertion
and waits until this number is greater or equal to the
MIN_OFFERS parameter specified in the configuration or
until the elapsed time reaches the TIMEOUT parameter. If

201

Figure 2. SLA Negotiation for Pull jobs

at this moment the requested number of offers is reached
then Spacer passes to the next stage of selecting the most
appropriate offer. Otherwise, Spacer calls the OnDemand-
Provisioner service and tries to provision the requested ser-
vice provider. The aforementioned sequence is repeated
as many times as necessary to collect enough offers but
no longer then until the REPEAT_TIMES parameter is
reached. However, if the number of collected offers is not
sufficient during the last round of the algorithm and provi-
sioning succeeds, Spacer gives the exertion another chance
by allowing the sequence to be repeated once more.

4.2 Selecting the Best SLA Offer

When the number of collected offers reaches the value
specified in the MIN_OFFERS parameter the control flow
is passed to the SLA optimizer component within the
Spacer service. The optimizer selects the most appropriate
offer based on estimated time and cost parameters speci-
fied in every offer and the requested priority contained in
the QoS requirements for a given exertion. This selection
may be performed according to one parameter (the shortest
time or the lowest cost) or it may involve multi-objective
optimization (the shortest time at constrained cost or vice-
versa), however, in case of Pull jobs a full upfront multi-
objective optimization is not possible as it undermines the
basic assumption of asynchronous operation and time inde-
pendence of tasks within the Pull job.

For the same reason there is no possibility for the
Spacer to select an updated SLA offer, that is, one were
the original QoS requirements are not entirely fulfilled. In

such case, however, Spacer returns to the requester the set
of updated offers and the requester may choose to lower its
expectations and rerun the job.

4.3 Leasing SLA Offers

SERVME uses a leasing mechanism to avoid blocking re-
sources unnecessarily as well as a distributed garbage col-
lector. In case of Pull jobs, the mechanism is designed
in the following way. A Lease is created when a service
provider issues an SLA offer. This lease has a fixed time-
out. The offer is written to the space. When it is collected
by the Spacer service it is immediately passed to a lease
renewal service which takes care of extending the Lease
automatically until it is released or the service is disposed.
When offers are collected and the Spacer selects the best
one, its Lease is extended while all other ones are canceled
allowing resources allocated for these SLA offers to imme-
diately become free.

The Lease for the chosen offer is monitored and ex-
tended by the renewal service for the whole duration of the
exertion’s execution that begins shortly after the selection
of the SLA offer.

4.4 SLA Acceptance, Signing and Execution

This step should be performed by the service requester and
that is the case with Push jobs, however, in case of Pull jobs
such behavior would impose significant overhead needed
to asynchronously pass the selected SLA offers to the re-
quester for acceptance and signing. Furthermore, the com-

202

munication model imposed by the federated method invo-
cation does not allow to communicate with the requester
without stopping the control flow of the entire exertion and
passing it to the requester. As a result, it is proposed to al-
low the Spacer service to perform the signing of SLA offers
on behalf of the requester.

Spacer accepts and signs chosen SLA offers inde-
pendently for each exertion immediately after selecting it.
Then the SLA is sent to the issuing service provider and the
exertion’s service() method is called to start the execution.

When the execution of all inner exertions finishes the
Spacer collects the results, calculates the actual overall time
and cost of the execution and returns the results and the
control flow to the requester.

4.5 SLA Envelops

The SLA Envelop created for each exertion and written to
the space contains the following information a) exertion ID,
b) SLA contract (requirements or offer), c) SLA state, d)
service type, e) optionally the requested provider’s name.

When the envelop is written to the space its SLA state
is set to SLA_REQUEST. Every service provider creates a
template to match requests for SLA offers for every service
type (interface) that it can offer. Each of those templates
contains the offered service type and the SLA state set to
SLA_REQUEST.

4.6 Distributed Arrays in Space

As opposed to the algorithm of exerting non-QoS exertions
via space proposed in SORCER that uses independent en-
tries (exertion envelops) in the space, the SLA acquisition
and negotiation algorithm in SERVME needs to store col-
lections of entries in the space. This results from the fact
that for every SLA offer request written to the space by
the Spacer service there may be any number of SLA offers
and the ability to determine their current number without
reading all these objects from the space is crucial. There-
fore SERVME proposes a structure called a distributed ar-
ray that is an extended pattern based on the structure by the
same name proposed by F. Freeman et al. in [5]. SERVME
extends the basic distributed array pattern by allowing mul-
tiple elements to be taken from the array as well as fixes
some issues with transactional handling of the arrays.

During the SLA negotiation process the Spacer ser-
vice creates two distributed arrays for every SLA offer re-
quest: one for SLA offers and another one for offers that
do not completely fulfill QoS requirements - updated SLA
offers.

Service providers append their offers to the corre-
sponding arrays while the Spacer service monitors the size
of the array that contains SLA offers. When the number
of collected offers reaches the required number specified
in the MIN_OFFERS parameter or when a timeout event
occurs both arrays are read from space and deleted.

5 Deployment

The proposed coordination algorithm was implemented
and successfully tested within the SORCER MOS.

The reference implementation was written in Java 1.6
and requires Jini 2.1 and Rio 4.0 [10]. The Rio runtime
is used for provisioning and as a source of QoS data. The
Rio’s Service UI is integrated into the SERVME service
provider’s UI and so, it allows the user to view and monitor
QoS parameters at runtime.

6 Performance Analysis

The complexity of distributed systems requires extensive
testing since often theoretical models are useless in prac-
tice. A real-world use case from bioengineering was se-
lected to validate the proposed solution.

The problem addressed in the use case focuses on pro-
tein sequencing using the Rosetta software. Rosetta has
become a de facto standard for scientists involved with
protein sequencing. It has been ported to the Berkeley
Open Infrastructure for Network Computing (BOINC) and
as Rosetta@home is available for those who want to con-
tribute by devoting part of their CPU time. Unfortunately,
not all scientists can benefit from this free CPU time.

The goal behind protein structure prediction is to de-
velop methods and algorithms that will allow us to predict
and order any given protein structures of any length of the
amino acid chain. The way scientists are trying to achieve
this is by generating computed models of proteins, so called
decoys, and comparing them with the real structure solved
by experimental methods.

The use case scenario involved running multiple si-
multaneous computations to generate a large number of
decoys for a particular protein structure. For practical rea-
sons, since it is easier to observe how well SERVME man-
ages resources on a small example, the chosen structure is
rather short.

This protein known as the 2KHT structure has a
length of 30 residues and is represented by the following
sequence: ACYCRIPACIAGERRYGTCIYQGRLWAFCC

It is important to mention that in this use-case the
SORCER MOS is used similarily to a traditional grid: the
business logic comes from the provider and the exertion
job is only used to coordinate the simultaneous execution
of multiple calculations. Although it is a notable limitation
it simplifies the use-case and allows to focus on resource
management capabilities.

The computations were run using the stand-alone
Rosetta software 3.1 on a cluster that consists of 10 AMD
Opteron-based servers connected by a Gigabit network and
running Centos 5.3 Linux.

6.1 Assumptions

The experiments were run under the following assump-
tions:

203

1. Every exertion job contained 20 inner simple exertions
(tasks). The goal of each task within this job was to
compute one decoy for the protein structure presented
above. The QoS requirements requested an exclusive
reservation of one CPU’s core to any given task.

2. To ensure comparability of results the cluster was not
used by any other user and no other jobs were run si-
multaneously. All experiments were repeated many
times. (50 for jobs with a parallel flow and 30 for se-
quential ones).

3. Every provider used a cost/time approximation model
in which the cost is inversely proportional to the ex-
ecution time – as a result the execution on faster ma-
chines is more costly than on lower-end hardware. In
these tests the chosen algorithm was rather simple.
The cost was estimated according to the following for-
mula: EstimatedCost = 5000

EstimatedTime , where the
EstimatedTime expressed in milliseconds was calcu-
lated as the average execution time for previously run
exertions with similar parameters: in this case, since
the tasks were practically identical, this applied to cal-
culations of all previous decoys.

4. The cost of coordinating a job by the rendezvous peer
was constant and set to 100 units.

6.2 Discussion

Despite holding the assumption about exclusive access to
the computing cluster used for the experiments, in a dis-
tributed system there is always a number of factors that
influence the performance and thus the execution times of
computing tasks. This property does not allow to perform a
complete statistical analysis and, in particular, discourages
from drawing quantitative conclusions from the outcomes.
However, the results together with the a priori knowledge
about the applied coordination algorithms allow us to infer
qualitative hypotheses and thus concentrate on trends rather
than differences expressed in numbers. On the other hand,
however, for better credibility the observations were ana-
lyzed from the point of view of their distribution. With mi-
nor exceptions, the kurtosis is positive or oscillates around
“0”. This fact together with a relatively small standard de-
viation allows for assuming that the distribution concen-
trates around the average and thus the average may be re-
garded as a credible measure.

The discussion on the results focuses on three trends
that may be observed: (1) To show how jobs run with QoS
management perform in comparison to those that are coor-
dinated using techniques previously available in the SOR-
CER environment. (2) To prove that SERVME allows for
optimization of the execution of composite exertions for
the best time or the lowest cost. (3) To show how the cho-
sen parameters (in particular, MIN_OFFERS) influence the
actual performance.

Figure 3. Execution Time (s) for Parallel jobs

Table 2. Execution Time: Parallel jobs

These trends may be better observed by looking at
jobs with a parallel flow therefore due to space limitations
the results of sequentially run experiments have been omit-
ted in this paper. The chart shown in Figure 3 presents the
average execution time for the non-QoS Pull job vs. QoS
Pull. The time is expressed in seconds and the parameters
for each job (priority and MIN_OFFERS) are given below
every bar.

The first trend may be observed by looking at three
figures. The results in Figure 3 show that Pull jobs with
QoS perform better only if they use a FIFO type of SLA
selection, that is, when MIN_OFFERS is set to “1”. The
reason why the execution time rises together with the
MIN_OFFERS parameter results probably from the wait-
ing time spent on collecting SLA offers. It is worth not-
ing that the task executed in the experiment was relatively
short. In case of calculations that take longer the rising
waiting time should have a less significant impact.

As far as the second trend: cost vs. time priority
is concerned the experiments show that the inverse cor-
relation of time and cost rises increases together with the
MIN_OFFERS parameter. This tendency is not very strong
and probably results from the fact that the cluster used for
experiments is not really heterogeneous – all nodes have
CPUs of the same speed. In a more diverse deployment the
effects of setting the optimization priority should be more
evident.

Finally, some general conclusions can be drawn. Set-
ting a higher MIN_OFFERS parameter makes only sense
when the priority is to lower the cost, since it allows for
achieving a more precise selection and, consequently a

204

lower cost (if the priority is set to cost) but adds waiting
time required to collect more offers and thus significantly
impairs the overall execution time.

The results proved that with appropriate parameters,
the new coordination algorithm allows us to significantly
shorten the overall execution time for complex computa-
tions while adhering to the requested QoS requirements and
allowing resources to be used in a fair way. This last point
is particularly important for settings where SERVME may
be applied to manage resources in a shared environment
used concurrently by many users.

7 Conclusion

The paper presents a new SLA-based asynchronous coor-
dination algorithm for Federated Metacomputing Environ-
ments. This algorithm integrates the recently developed
dynamic SLA negotiation with the space-based comput-
ing approach. It was developed as an extension within the
SERViceable Metacomputing Environment and thus uses
its infrastructure services: QosCatalog, SlaDispatcher, Sla-
Monitor, SlaPrioritizer, and OnDemandProvisioner. The
SLA object model introduced in SERVME is utilized as
a common description model for QoS parameters. The
presented solution addresses the challenges of spontaneous
federations in SORCER and allows for better resource al-
location.

As the performance analysis realized on a real-world
use case of protein structure prediction shows the new al-
gorithm allows us to optimize the usage of resources ac-
cording to cost/time priorities and with certain parameters
shortens the overall execution time in comparison to the
previous non-QoS algorithm used in SORCER. The intro-
duced on-demand provisioning of services provides for bet-
ter hardware utilization by reducing the number of compute
resources to those presently required for collaborations de-
fined by corresponding exertions and therefore allows the
architecture to scale very well. When diverse and special-
ized hardware is used, SERVME provides means to man-
age the prioritization of tasks according to the organiza-
tion’s strategy that defines "who is computing what and
where". Finally, the proposed environment allows for ac-
counting of resource utilization based on dynamic cost met-
rics, thus it contributes towards the realization of the vision
of utility computing.

References

[1] J. Cao, D. Spooner, J.D. Turner, S. Jarvis, D. J. Kerbyson,
S. Saini, and G.R. Nudd. Agent-based resource management
for grid computing, 2002.

[2] K.-M. Chao, M. Younas, and N. Griffiths. BPEL4WS-based
coordination of grid services in design. Computers in Indus-
try, 57(8-9):778–786, December 2006.

[3] T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, L. DÃaz
de Cerio, F. Freitag, R. Messeguer, L. Navarro, D. Royo,
and K. Sanjeevan. Decentralized vs. centralized economic

coordination of resource allocation in grids. In F.F. Rivera,
M. Bubak, A.G. Tato, and R. Doallo, editors, Grid Com-
puting, volume 2970 of Lecture Notes in Computer Science,
pages 9–16. Springer Berlin / Heidelberg, 2004.

[4] F. Favarim, J. da Silva Fraga, L.C.Lung, M.Correia, and
J.F. Santos. Exploiting tuple spaces to provide Fault-
Tolerant scheduling on computational grids. In Proceed-
ings of the 10th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Comput-
ing, pages 403–411. IEEE Computer Society, 2007.

[5] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces(TM)
Principles, Patterns, and Practice. Prentice Hall PTR, June
1999.

[6] D. Gelernter. Generative communication in linda. ACM
Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[7] Z. Juhasz and L. Kesmarki. A Jini-Based prototype meta-
computing framework. In Euro-Par 2000 Parallel Process-
ing, pages 1171–1174. 2000.

[8] D. Khushraj, O. Lassila, and T. Finin. sTuples: semantic
tuple spaces. In Mobile and Ubiquitous Systems, Annual
International Conference on, volume 0, pages 268–277, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[9] E. Kühn, R. Mordinyi, and C. Schreiber. An extensible
Space-Based coordination approach for modeling complex
patterns in large systems,. In Leveraging Applications of
Formal Methods, Verification and Validation, pages 634–
648. 2009.

[10] D. Reedy. Project rio: A dynamic adaptive network architec-
ture. Technical report, Technical Report, Sun Microsystems,
2004.

[11] P. Rubach and M. Sobolewski. Autonomic SLA manage-
ment in federated computing environments. In 2009 In-
ternational Conference on Parallel Processing Workshops,
pages 314–321, Vienna, Austria, 2009.

[12] P. Rubach and M. Sobolewski. Dynamic SLA negotiation
in autonomic federated environments. In Robert Meers-
man, Pilar Herrero, and Tharam Dillon, editors, On the
Move to Meaningful Internet Systems: OTM 2009 Work-
shops, volume 5872 of Lecture Notes in Computer Science,
page 248–258. Springer, 2009.

[13] M. Sobolewski. Federated method invocation with exer-
tions. In Proceedings of the 2007 IMCSIT Conference, pages
765–778. PTI Press, 2007.

[14] M. Sobolewski. Exertion oriented programming. In Inter-
national Journal on Computer Science and Information Sys-
tems, volume 3 of IADIS, pages 86–109. 2008.

[15] M. Sobolewski. Metacomputing with federated method in-
vocation. In Advances in Computer Science and IT, pages
337–363. M. Akbar Hussain, In-Tech edition, 2009.

[16] V. Sunderam and D. Kurzyniec. Lightweight self-organizing
frameworks for metacomputing. In High Performance Dis-
tributed Computing, 2002. HPDC-11 2002. Proceedings.
11th IEEE International Symposium on, pages 113–122,
2002.

205

