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Abstract. Most enterprise computing programs are still not written in metapro-
gramming languages but rather composed line by line in software programming 
languages as they were decades ago. These programming languages are poorly 
suited to expressing enterprise processes targeted at complex, domain-specific 
and transdisciplinary problems. The current state of the art is that legacy  
programs and scripts can be used as programming instructions provided by  
dynamic service objects. New metaprograms (programs of programs) require 
relevant operating systems managing service objects as a virtual service 
metaprocessor. However, there are presently no acceptable metaprogramming 
methodologies to program, deploy, and dynamically federate these relevant ser-
vice objects into a virtual processor securely and efficiently with fault detection 
and recovery. In this paper the emerging metacomputing SORCER platform 
with its federated method invocation and exertion-oriented programming model 
is contrasted with service protocol-oriented architectures (e.g., OGSA, 
CORBA, RMI) which limit us to one fixed wire protocol, static network con-
figurations, and often restricts us to heavyweight containers (e.g., application 
servers) for hosting service objects. 
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1   Introduction 

"Computing's core challenge is how not to make a mess of it."   Edsger Dijkstra 
 
Computing has evolved over centuries. It is and always has been about processes and 
process expressions. The creation or activation of process expressions has changed 
over time as it reflects the continuous change in problems being solved by humans 
and the languages used. As a current example, UML behavior diagrams allow us to 

 multiple process expressions that generalize flowchart diagrams which were 
introduced by Markov in 1954 to represent "algorithms" [15, 5].  

As we reach adolescence in the Internet era we are facing the dawn of the meta-
computing era, an era that will be marked not by PCs, workstations, and servers, but 
by computational capability that is embedded in all things around us—virtual  
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computing services as programming instructions of a virtual metacomputer. The term 
"metacomputing" was coined around 1987 by NCSA Director, Larry Smarr: "The 
metacomputer is, simply put, a collection of computers held together by state-of-the-
art technology and balanced so that, to the individual user, it looks and acts like a 
single computer. The constituent parts of the resulting metacomputer could be housed 
locally, or distributed between buildings, even continents." [16] 

In computing science the common thread in all computing disciplines are process 
expression and actualization of process expression [5], for example: 

1. An architecture is an expression of a continuously acting process to interpret 
symbolically expressed processes. 

2. A user interface is an expression of an interactive human-machine process. 
3. A program is an expression of a computing process. 
4. A programming language is an environment within which to create symbolic 

process expressions. 
5. A compiler is an expression of a process that translates between symbolic 

process expressions in different languages. 
6. An operating system is an expression of a process that manages the interpreta-

tion of other process expressions. 
7. A processor is an actualization of a process. 
8. An application is an expression of the application process. 
9. A computing platform is an expression of a runtime process defined by its 

programming language, operating system, and processor. 
10. A computer is an actualization of a computing platform. 
11. A metaprogram is an expression of a metaprocess, as the process of processes. 
12. A metaprogramming language is an environment within which to create sym-

bolic metaprocess expressions. 
13. A metaoperating system is an expression of a process that manages the inter-

pretation of other metaprocess expressions. 
14. A metaprocessor is an actualization of the metaprocess on the aggregation of 

distinct computers working together so that to the user it looks and operates 
like a single processor. 

15. A metacomputing platform is an expression of a runtime process defined by its 
metaprogramming language, metaoperating system, and metaprocessor. 

16. A metacomputer is an actualization of a metacomputing platform. 
17. Enterprise computing is an expression of transdisciplinary enterprise  

processes. 

Obviously, there is an essential overlap between the domains of mathematics and 
computer science, but the core concerns with the nature of process expression itself 
are usually ignored in mathematics since mathematicians are concerned with the na-
ture of the behavior of a process independent of how that process is expressed. Com-
puting science is concerned with computing processes and computer science is mainly 
concerned with the nature of the expression of processes independent of its process. 
In Fig. 1, the difference between programming and metaprogramming is illustrated 
where a metaprogram on its metaprocessor is the program of programs on multiple 
processors. 
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Fig. 1. The programming structure is indicated by yellow colors and the metaprogramming 
structure by bluish colors. Programming instructions are realized by native processor instruc-
tions, but metainstructions by services (with blue outlines) invoking legacy programs (with 
yellow outlines). Metaprogramming is focused on service compositions and metacomputer 
engineering on construction of metaprocessors—service assemblies from other services and 
modules. 

Service providers expose existing programs that execute on a network of proces-
sors (see Fig. 1) as service types. These service types, e.g. Java interfaces, are imple-
mented by service objects hosted by a provider. The service objects just consume 
services and provide services from and to each other respectively. Applications are 
increasingly moving to the network—self aware, autonomic networks that are always 
fully functional. A service provider exposes multiple interfaces implemented by its 
service objects that in turn provide instructions for the service-oriented processor 
(metaprocessor). Most current efforts in service systems are focused on service-
oriented engineering—constructing metaprocessors by assembling service objects 
from other services and modules (e.g., OSGi, SCA, BPEL). 

Thus, the metaprocessor via its operating system carries access to applications, 
tools, and utilities, i.e., programs exposed by service objects. Service providers can 
federate with each other dynamically to provide service collaborations—to realize a 
metaprogram—the service-oriented expression of the metaprocess.  

The SORCER [20-24] service-oriented system is the enterprise platform based the 
service-oriented philosophy outlined above. Its architecture is derived from the 
metaprogramming model with three languages that allow for model-driven program-
ming with service collaborations (Section 3.2). It supports three core neutralities [22]: 
requestor/provider wire protocol [28], provider implementation, and provider location 
in the network.  
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Let's consider the "Hello Service Arithmetic" example. Assume we have three ser-
vices on the network: 
f3 = x1 - x2; f4 = x1 * x2; and f5 = x1 + x2 

which implement three interfaces: Subtractor, Multiplier, and Adder, re-
spectively. We want to program a distributed service that mimics a function  
composition: 

f3(f4, f5) and calculate: f3(f4(10.0, 50.0), f5(20.0, 80.0)) 

to get 400.0 as the result of collaboration of three services: f4, f5, and f3.  
Consider the equivalent service-oriented program (workflow) that can run in  
SORCER: 

String arg = "arg", result = "result"; 
String x1 = "x1", x2 = "x2", y = "y"; 
Task f3 = task("f3", op("subtract", Subtractor.class), 
  context("subtract", in(path(arg,x1), null), 
    in(path(arg,x2),null), out(path(result,y),null))); 
Task f4 = task("f4", op("multiply", Multiplier.class),  
  context("multiply", in(path(arg, x1), 10.0), 
    in(path(arg,x2), 50.0), out(path(result,y),null))); 
Task f5 = task("f5", op("add", Adder.class), 
  context("add”, in(path(arg,x1), 20.0), 
    in(path(arg,x2), 80.0),out(path(result,y),null))); 
Job f1= job("f1",  
  job("f2",f4,f5,strategy(Flow.PARALLEL, Access.PULL)), 
  f3, 
  pipe(out(f4, path(result,y)), in(f3, path(arg,x1))), 
  pipe(out(f5, path(result,y)), in(f3, path(arg,x2)))); 
return value(exert(f1), path("f3", result)); 

The first two lines define the names of the arguments used in this program. Next, 
three tasks f3, f4, and f5 are declared from which two composite services are de-
clared: f1 and f2. A few metalanguage operators are used in the program to define 
services: op (short for operation) defines the service operation by its name in the 
requested service type, e.g., the operation "subtract" in the Java interface Sub-
tractor.class in f3; operators in, out, and inout specify service input 
and output parameters by paths in the associative array called context. The ex-
pressions that start with the operator task or job are called exertions. Exertions 
specify service compositions and define the process by its control strategy expressed 
by the strategy operator in jobs. Service compositions (exertions) define virtual 
services created from other services. Tasks are elementary services and jobs are com-
pound services in exertion-oriented programming. 

The program above defines a function composition f3:  

 f3(f4(x1, x2), f5(x1, x2)), 

as a SORCER service composition f1: 

 f1(f2(f4(x1, x2), f5(x1, x2)), f3).  
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Task f4 requests operation "multiply" of its arguments "arg/x1" and 
"arg/x2" by the service Multiplier.class. Task f5 requests operation 
"add" of its arguments "arg/x1" and "arg/x2" by service Adder.class. 
Task f3 requests to "subtract" "arg/x2" from "arg/x1" by Subtrac-
tor.class where input parameter values are not defined yet. Job f2 requests 
execution of both f4 and f5 with its process strategy: 

 strategy (Flow.PARALLEL, Access.PULL)) 

This means that the component services f4 and f5 of f2 are executed in parallel 
and the corresponding service objects will not be accessed directly (PUSH) by the 
SORCER OS. In this case the corresponding service objects will process their tasks 
via the SORCER shared exertion space (PULL) when they are available to do so [21]. 
The default control strategy is sequential (Flow.SEQUENTIAL) execution with 
PUSH access, which is applied to job f2. 

Finally the job f1, executes first job f2 and then via data pipes (defined with the 
pipe operator in f1) passes the results of tasks f4 and f5 on to task f3 for 
"arg/x1" and "arg/x2" correspondingly. The last statement in the above pro-
gram exerts the collaboration exert(f1). Exerting means executing the service 
collaboration and returning the exertion with the processed contexts of all component 
exertions along with operational details like execution states, errors, exceptions, etc.  
Then it returns the value of the service collaboration f1 with the path 
path("f3", result), which selects the value 400.0 from the context of 
executed task f3 at the path "result". The single service activation, ex-
ert(f1), creates at runtime a dynamic federation of required collaborating services 
with no network configuration. This type of process is referred to as "federated". 

The rest of the paper is organized as follows: Section 2 differentiates metacomput-
ing from computing and defines metacomputing concepts used in SORCER. Section 3 
presents the SORCER platform with its metaprogramming languages and metaoperat-
ing system and Subsection 3.5 illustrates how to implement service-objects to execute 
the service-oriented program presented above. This is followed by concluding re-
marks and plans for future work. 

2   From Computing to Metacomputing 

From the very beginning of networked computing, the desire has existed to develop 
protocols and methods that facilitate the ability of people and automatic processes to 
share resources and information across different computing nodes in an optimized 
way. As ARPANET [14] began through the involvement of the NSF to evolve into 
the Internet for general use, the steady stream of ideas became a flood of techniques 
to submit, control, and schedule jobs across distributed systems. The latest in these 
ideas are the grid [6, 25, 26] and cloud [13], intended for use by a wide variety of 
different applications in a non-hierarchical manner to provide access to powerful 
aggregates of resources. Grids and clouds, in the ideal, are intended to be accessed for 
computation, data storage and distribution, visualization, and display, among other 
applications, without undue regard for the specific nature of the hardware and  
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underlying operating systems on the resources on which these jobs are carried out. 
While a grid is focused on computing resource utilization, clouds are focused on 
virtualization. In general, grid and cloud computing are client-server architectures that 
abstract away the details of the server—one requests a resource (service), not a spe-
cific server (machine). However, both terms are vague from the point of view of 
computing process expression and relevant programming models and referring to 
"everything that we already do" by providing various middleware architectures that 
are not only difficult to use but difficult for the end users to understand.  

The concept of "middleware" has remained largely unchanged since client-server 
computing emerged in the late 1980s. It's software that provides a link between sepa-
rate software applications or services. Middleware sits "in the middle" between appli-
cation software that may be executing on different operating systems. Middleware 
consists of a set of services that allow multiple processes running on one or more 
machines to interact. The distinction between operating system and middleware func-
tionality is, to some extent, arbitrary. Additional services provided by separately-
developed middleware can be integrated into operating systems when needed.  

Either middleware or an operating system (OS) is the expression of a process that 
manages the interpretation of other process expressions. Thus, to express a service-
oriented (SO) process we need a service-oriented OS, but also we need an expression 
of an SO process. For the latter we need an SO program and the corresponding SO 
processor to activate it according to the OS interpretation. Thus, the SO process is 
expressed by three complementing each other process expressions: 

1. expression of an SO process—the SO program;  
2. management of the service collaboration representing the SO program—the SO 

operating system; and 
3. activation of the SO collaboration—the SO processor. 

Service architectures can be distinguished by the type of application metaprogram-
ming language and related metaoperating system. Most existing service architectures 
are focused mainly on service provider assemblies at the middleware level (OSGi 
[OSGi Alliance], BPEL [11], Globus/Condor [26]), but not the metaprogramming by 
end users. It is reminiscent of the 60s when job schedulers were used while operating 
systems with high level programming environments were still in the development 
phases and only low-level application programming for job schedulers was available. 

Lack of application metaprogramming languages is the main source of confusion 
regarding what SO programming is all about. It is still very difficult for most users to 
create user-defined SO programs. Instead of domain-specific SO programs, detailed 
and low-level programming must be carried out by the user through command line 
and script execution to carefully tailor jobs on each end to the resources on which 
they will run, or for the data structure that they will access. This produces frustration 
on the part of the user, delays in the adoption of enterprise techniques, and a multi-
plicity of specialized “enterprise-aware” tools that are not, in fact, aware of each other 
which defeats the basic purpose of the grid or cloud. 

Let's consider, for example, Web Services (WS) [4], OSGi, and Jini [10, 1] archi-
tectures. Each is a service architecture but built for different service semantics. WS is 
a service architecture for distributed systems that are built on a static middleware 



188 M. Sobolewski 

 

fixed on the XML/WSDL/SOAP/BPEL and running on Application Servers. OSGi is 
a service architecture (at least by name) for services that are in the same process ad-
dress space. Jini is a service architecture for distributed systems that is built out of 
dynamic service objects that are separated by an unreliable network [4]. Each allows 
allow you to build programs out of collaborating services with detailed programming 
required. Each has a completely different concept of service that the user has to be 
familiar with. The major difference is in the type of collaboration you can create and 
how you can create service collaborations. Also, the unreliable network (Jini) is a 
very different environment [4] from the single virtual machine (OSGi), or an Applica-
tion Server used for WS deployment.  

Creating a collaboration of services in any of the three environments is easy for 
neither end users nor developers. Creating collaborations of services coming from all 
three environments in a uniform way is not possible and no metaprogramming is 
available that would differ from middleware programming. These environments are 
mainly focused on metaprocessor but not on three intrinsic layers of SO computing: 
SO programming (metalanguage), SO management (middleware), and SO execution 
(dynamic federations of service providers). 

Before we delve into the SORCER metacomputing and metaprogramming  
concepts, the introduction of some terminology used throughout the paper is required: 

• A computation is a process following a well-defined model that is understood and 
can be symbolically expressed and physically accomplished (physically ex-
pressed). A computation can be seen as a purely physical phenomenon occurring 
inside a system called a computer.  

• Computing requires a computing platform (runtime) to operate. Computing  
platforms that allow programs to run require a processor, operating system, and 
programming environment with related tools to create symbolic process expres-
sions—programs. A computation is physically expressed by a processor and 
symbolically expressed by a program. 

• A distributed computation allows for sharing computing resources usually  
llocated on several remote computers (compute nodes) to collaboratively run a 
single complex computation in a transparent and coherent way. In distributed 
computing, computations are decomposed into programs, processes, and compute 
nodes.  

• A metacomputer is an interconnected and balanced set of compute nodes that 
operate as a single unit, which is accessible by its computing platform 
(metaprocessor, metaoperating system, and metaprogramming environment). 

• A metacomputation is a form of distributed computation (a computation of compu-
tations) determined by collaborating computations that a metacomputer can inter-
pret and execute. A service object selected at runtime by a metaoperating system 
implements metainstructions that invoke what are usually legacy programs.  

• A collection of service providers selected and managed for a metacomputation is 
called a virtual metaprocessor. 

• A metaprogram is an expression of metacomputation, represented in a program-
ming language, which a metacomputer follows in processing shared data for a 
service collaboration managed by its metaoperating system on its virtual 
metaprocessor.  
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• A service object is a remote object that provides services to other service objects. 
Service objects are identified primarily by service types and typically do not have 
a lifecycle of their own; any state they do contain tends to be an aggregate of the 
states of the local entity objects that they offer to service requestors. A service 
object that implements multiple interfaces provides multiple services. A service 
provider makes interfaces of multiple service objects available on the network. 

• A service-oriented architecture (SOA) is a software architecture using loosely 
coupled service providers. The SOA integrates them into a distributed computing 
system by means of SO programming. Service objects are made available as in-
dependent components that can be accessed without a priori knowledge of their 
underlying platform, implementation, and location. The client-server architecture 
separates a client from a server, SOA introduces a third component, a service reg-
istry. The registry allows the metaoperating system (not the end user or applica-
tion) to dynamically find service objects on the network. 

• If the application (wire) protocol between requestors and all service providers is 
predefined and constant then this type of SOA is called a service-protocol ori-
ented architecture (SPOA). In contrast, if the communication is based on mes-
sage passing and the wire protocol can be chosen by a provider to satisfy efficient 
communication with its requestors, then the architecture is called a service-object 
oriented architecture (SOOA). 

Let's emphasize the major distinction between SOOA and SPOA: in SOOA, a proxy 
object is created and always owned by the service provider, but in SPOA, the re-
questor creates and owns a proxy which has to meet the requirements of the protocol 
that the provider and requestor agreed upon a priori. Thus, in SPOA the protocol is 
always fixed, generic, and reduced to a common denominator—one size fits all—that 
leads to inefficient network communication with heterogeneous large datasets. In 
SOOA, each provider can decide on the most efficient protocol(s) needed for a par-
ticular distributed application. For example, SPOA wire protocols are: SOAP in Web 
and Grid Services, IIOP in CORBA, JRMP in Java RMI. SORCER implements its 
SOOA with the Jini service architecture [10]. 

The platforms and related programming models have evolved as process expres-
sion has evolved from the sequential process expression activated on a single com-
puter to the concurrent process expression activated on multiple computers. The evo-
lution in process expression introduces new platform benefits but at the same time 
introduces additional programming complexity that operating systems have to deal 
with. We can distinguish seven quantum jumps in process expression and related 
programming complexity [22]: 

1. Sequential programming (e.g., von Neumann architecture) 
2. Multi-threaded programming (e.g., Java Platform) 
3. Multi-process programming (e.g., Unix platform) 
4. Multi-machine-process programming (e.g., CORBA) 
5. Knowledge-based programming (e.g., DICEtalk [19]) 
6. Service-protocol oriented programming (e.g., Web and Grid Services) 
7. Service-object oriented programming (e.g. SORCER) 



190 M. Sobolewski 

 

SORCER introduces an exertion-oriented (EO) programming model with federated 
method invocation (FMI) in its SOOA. FMI defines the communication framework 
between three SORCER architectural layers: SO programming, management, and 
execution. 

3   Service-Object Oriented Platform: SORCER 

The term "federated" means that a single service invocation with no network configu-
ration creates at runtime a dynamic federation of required collaborating services. 
SORCER (Service-ORiented Computing EnviRonment) is a federated service-to-
service (S2S) metacomputing environment that treats service providers as network 
peers with well-defined semantics of a service-object oriented architecture (SOOA). It 
is based on Jini semantics of services [10] in the network and the Jini programming 
model [3, 1] with explicit leases, distributed events, transactions, and discovery/join 
protocols. Jini focuses on service management in a networked environment, SORCER 
is focused on exertion-oriented (EO) programming and the execution environment for 
exertions (see Fig. 2).  

 

 

Fig. 2. SORCER layered architecture, where P1 metaprocessor, P1-6 application services, P2 
operating system services, P3 programming environment 

3.1   Exertion-Oriented Programming 

The programming example presented in the Introduction implies that an expression of 
service (task or job) in the EO declarative language can be written as one line—the 
feature of functional programming. For example f1 can be rewritten in one line by 
substituting references to the component exertions by their corresponding expressions. 
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The operators in the EO language, described in the Introduction, correspond to 
Java interfaces and classes [20]. The SORCER framework almost entirely designed in 
terms of Java interfaces. To explain how SORCER works we will refer to a few Java 
interfaces and classes in the remainder of this paper. For example, operators task 
and job return objects that are defined by the Exertion interface with correspond-
ing reference implementations: ServiceTask and ServiceJob respectively. 
Thus for each EO operator there is a corresponding Java object. To avoid potential 
confusions of concepts with the dual representation in declarative language and im-
plementation language we will refer to a declarative language concept as defined so 
far and appending "object" when referring to the corresponding Java type. For exam-
ple, an "exertion" is an expression in the EO language and an "exertion object" as one 
implementing the Exertion interface. 

An exertion is an expression of a service collaboration realized by both metaop-
erating system providers (in short mos-providers) and application providers (in short 
app-providers). For each exertion the mos-federation is formed dynamically to reflect 
the exertion's recursive service composition and control strategy [23]. The mos-
federation manages for the exertion late bindings to the required app-providers in the 
dynamically formed app-federation (exertion's metaprocessor). The app-federation 
represents service objects that implement all exertion operations. Thus, the mos-
federation provides the functionality of the SORCER OS (SOS) and the app-
federation provides the functionality of the SORCER metaprocessor (SMP). 

Please note that exertion objects are entities that encapsulate explicitly data, opera-
tions, and control strategy. SOS uses service compositions, interfaces, and control 
strategies, but data contexts and corresponding methods are used by SMP. The inter-
faces are dynamically bound to corresponding service-objects at runtime even to those 
that have to be provisioned on-demand. The service objects in the app-federation 
execute the exertion's operations transparently according to the exertion's control 
strategy managed by SOS. The SORCER Triple Command Pattern [9] defines feder-
ated method invocation (FMI) that integrates SOS with SMP. FMI is presented in 
more detail in Section. 5.4 [22] 

From the SORCER platform point of view, exertions are entities at the EO pro-
gramming level, sos-federations at the SOS level, and app-federations at the SMP 
level. Thus, an exertion represents the process of the cooperating SOS and SMP ser-
vice providers (see Fig. 3). 

The primary difference between the sos-federation and the app-federation is man-
agement and execution. The sos-federation and the app-federation distinctions are 
based on the analogies between the company management and employees. The top-
level exertion refers to the central control (the Chairman of the company—binding 
the top-level exertion to SOS) of the behavior of a management system (the Chair-
man's staff—sos-federation), while the app-federation refers to the execution system 
(the company employees—the service objects) that operates according to execution 
rules (SORCER FMI), but without centralized control. 

The SORCER SOOA consists of three major types of remote objects: service pro-
viders, registries, and proxy objects. The provider is responsible for deploying the 
service on the network, publishing its proxy object to one or more registries, and 
allowing requestors to access its proxy. Providers advertise their availability on the  
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Fig. 3. Exertions and federations. The top-level exertion with component exertions is depicted 
below the service cloud. Green arrows between data contexts show data flow (context pipes). 
The solid red lines indicate late bindings to operating system services. Late bindings to all 
application services defined by the exertion signatures are indicated by dashed lines. The pro-
viders in the cloud, in red color, form the service federation—metaprocessor. 

network only while present; registries intercept these announcements and cache proxy 
objects to the provider services. The requestor (e.g., exertion) discovers registries and 
then looks up proxies by sending queries to registries and making selections from the 
available service types. Queries contain search criteria (defined by the op operator) 
related to the type and quality of service. Registries facilitate searching by storing 
proxy objects of services and making them available to requestors. Providers use 
discovery/join protocols to publish services on the network; requestors use discov-
ery/join protocols to obtain service proxies on the network. SORCER uses Jini dis-
covery/join protocols to implement dynamic service management for its SOS and 
SMP. Exertion objects are requestors capable of dynamically finding sos-providers, 
for example dynamically looking up or provisioning on-demnd Taskers and Job-
bers that in turn manage corresponding app-federations.  

A task object is an elementary command managed by a SOS provider of the 
Tasker type. A Tasker can provide a single service by itself or can manage a 
small-scale federation for the same data context used by all providers in its federation. 
A job object is defined hierarchically in terms of tasks and other jobs, including con-
trol flow exertions [22]. A job object is a composite command managed by rendez-
vous providers of Jobber, Spacer, or Cataloger type managing hierarchical 
large-scale collaborations.  

The exertion's data, called a data context [20], describes the data that Taskers 
work on. A data context, or simply a context, is an associative array that describes 
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service provider ontology along with related data. A provider‘s ontology is controlled 
by the provider vocabulary that describes data structures in a provider's namespace 
within a specified service domain of interest. A requestor defining an exertion has to 
comply with that ontology as it specifies how the context data is interpreted and used 
by the provider. The notion of context is derived from the knowledge representation 
scheme called percept calculus [19]. Thus, data context can be used as a knowledge 
base the same way it is used in the DICEtalk platform [19] or as a var-oriented model 
presented in Section 3.2. 

3.2   Var-Oriented Programming 

The fundamental principle of functional programming is that a computation can be 
realized by composing functions. Functional programming languages consider func-
tions to be data, avoid states, and mutable values in the evaluation process in contrast 
to the imperative programming style, which emphasizes changes in state values. Thus, 
one can write a function that takes other functions as parameters, returning yet an-
other function. Experience suggests that functional programs are more robust and 
easier to test than imperative ones.  

Not all operations are mathematical functions. In nonfunctional programming lan-
guages, "functions" are subroutines that return values while in a mathematical sense a 
function is a unique mapping from input values to output values. The SORCER var-
oriented (VO) framework allows one to use functions, subroutines, or coroutines in 
the same way. Here the term var is used to denote a mathematical function, subrou-
tine, coroutine, or any data (object).  

VO programming is a programming paradigm that treats any computation as the 
triplet: value, evaluator, and filter (VEF). Evaluators and filters can be executed lo-
cally or remotely, sequentially or concurrently. In particular, evaluators and filters can 
be considered as exertions, service providers, or conventional programs as indicated 
by green arrows in Fig. 4. The paradigm emphasizes the usage of evaluators and a 
pipeline of filters to define the variable value. Semantics of a var, whether it's a 
mathematical function, subroutine, coroutine, or just a value (object) depends on the 
evaluator type and pipeline of filters used with the variable. VO programming allows 
for exertions to use vars in data contexts. Alternatively, data contexts (implementing 
Context interface) with specialized structures of vars, called VO models, can be 
used for enterprise-wide metacomputing. Three VO analysis models: response, para-
metric, and optimization have been studied already.  

The variable evaluation strategy is defined as follows: the associated current 
evaluator determines the variable’s raw value, and the current pipeline of filters re-
turns the output value. Multiple associations of evaluator-filter can be used with the 
same var (multifidelity). Evaluator's raw value may depend on other var arguments 
and those vars in turn can depend on other argument vars and so on. This var depend-
ency chaining is called VO composition and provides in SORCER the integration 
framework for all possible types of computations represented by various types of 
evaluators including exertion evaluators. 
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Fig. 4. SORCER computing abstractions: model, evaluation, collaboration, and computation. 
Arrows indicate associations, diamonds indicate compositions, the hollow arrow generalization, 
and arrows in green color indicate various ways of var evaluation. 

The same evaluator with different filters can be associated with many vars. The 
modular VFE triplet structure of vars and reuse of evaluators and filters, including exer-
tion evaluators with context filters, in defining VO-oriented models is the key feature of 
VO programming that complements SO programming with local computations. 

VO models support multidisciplinary (vars from other models), and multifidelity 
(multiple evaluators per var) computing and are called amorphous models. For the 
same VO model an alternative set of evaluators (another fidelity) can be selected at 
runtime to evaluate a new particular version ("shape") of the model and quickly up-
date the related process in the right evolving direction.  

3.3   SORCER Operating System 

The SORCER OS (SOS) allows executing service-oriented program and by itself is the 
service-oriented system. The overlay network of the services defining the functionality 
of SOS is called the sos-federation and the overlay network of application-specific 
services is called the app-federation (see Fig. 2). The metainstruction set of the SOR-
CER metaprocessor consists of all operations offered by all services in the service fed-
eration—the union of the sos-federation and the app-federation. Thus, an EO program is 
composed of metainstructions with its own control strategy per service composition and 
data context representing the shared metaprogram data. Service signatures (instances of 
Signature type) correspond to op operators that specify operations of collaboration 
participants in the app-federation. Each signature primarily is defined by a service type, 
operation in that interface, and a set of optional attributes. Four types of signatures are 
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distinguished: PROCESS, PREPROCESS, POSTPROCESS, and APPEND. A PROC-
ESS signature—of which there is only one allowed per exertion—defines the dynamic 
late binding to a provider that implements the signature’s interface. The data context 
[20] describes the data that tasks and jobs work on. An APPEND signature defines the 
context received from the provider specified by this signature. The received context is 
then appended in runtime to the existing data context. The resulting context is then 
processed by PREPROCESS, PROCESS, and POSTPROCESS operations of the exer-
tion. Appending a data context allows a requestor to use network shared data in runtime 
not available to the requestor when the exertion is declared. SOS allows for an exertion 
to create and manage a service collaboration and transparently coordinate the execution 
of all component exertions within the assembled federation. Please note that these meta-
computing concepts are defined differently in traditional grid computing where a job is 
just an executing process for a submitted executable code with no federation being 
formed for the executable—the executable becomes the single service itself. 

An exertion can be activated, it means its collaboration exerted, by invoking the 
exert operation on the exertion object: 

 Exertion#exert(Transaction) : Exertion, 

where a parameter of the Transaction type is required when a transactional se-
mantics is needed for all participating nested exertions within the parent one. Thus, 
EO programming allows us to execute an exertion and invoke exertion’s signatures on 
collaborating service objects indirectly, but where does the service-to-service com-
munication come into play? How do these services communicate with one another if 
they are all different? Top-level communication between services, or the sending of 
service requests, is done through the use of the generic Servicer interface and the 
operation service that all SORCER providers are required to provide: 

 Servicer#service(Exertion, Transaction):Exertion. 

This top-level service operation takes an exertion  object as an argument and gives 
back an exertion object as the return value. 

So why are exertion objects used rather than directly calling on a provider's method 
and passing data contexts? There are two basic answers to this. First, passing exertion 
objects helps to aid with the network-centric messaging. A service requestor can send 
an exertion object implicitly out onto the network—Exertion#exert()—and 
any service provider can pick it up. The receiving provider can then look at the signa-
ture's interface and operation requested within the exertion object, and if it doesn't 
implement the desired interface or provide the desired method, it can continue for-
warding it to another service provider who can service it. Second, passing exertion 
objects helps with fault detection and recovery. Each exertion object has its own 
completion state associated with it to specify if it has yet to run, has already com-
pleted, or has failed. Since full exertion objects are both passed and returned, the user 
can view the failed exertion to see what method was being called as well as what was 
used in the data context input that may have caused the problem. Since exertion ob-
jects provide all the information needed to execute the exertion including its control 
strategy, the user would be able to pause a job between component exertions, analyze 
it and make needed updates. To figure out where to resume an exertion, the executing 
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provider would simply have to look at the exertion’s completion states and resume the 
first one that wasn't completed yet. In other words, EO programming allows the user, 
not programmer to update the metaprogram on-the-fly, what practically translates into 
creating new interactive collaborative applications at runtime. Applying the inversion 
principle, SOS executes the exertion’s collaboration with dynamically found, if pre-
sent, or provisioned on-demand service objects. The exertion caller has no direct 
dependency to service objects since the exertion uses only service types (interfaces) 
they implement. 

Despite the fact that any Servicer can accept any exertion, SOS services have well 
defined roles in the S2S platform (see Fig. 2): 

a) Taskers – accept service tasks; they are used to create application services by 
dependency injection (service assembly) or by inheritance (subclassing 
ServiceTasker and implementing required service interfaces); 

b) Jobbers –manage service collaboration for PUSH signatures; 
c) Spacers – manage service collaboration for PULL signatures using space-based 

computing [7]; 
d) Contexters – provide data contexts for APPEND signatures; 
e) FileStorers – provide access to federated file system providers [2, 27]; 
f) Catalogers – Servicer registries, provide management for QoS-based federations; 
g) SlaMonitors - provide monitoring of SLAs [18]; 
h) Provisioners - provide on-demand provisioning of services by SERVME [17, 18]; 
i) Persisters – persist data contexts, tasks, and jobs to be reused for interactive EO 

programming; 
j) Relayers – gateway providers; transform exertions to native representation, for 

example integration with Web services and JXTA; 
k) Authenticators, Authorizers, Policers, KeyStorers – provide support for service 

security; 
l) Auditors, Reporters, Loggers – support for accountability, reporting, and logging 

m) Griders, Callers, Methoders – support for a conventional compute grid; 
n) Notifiers - use third party services for collecting provider notifications for time 

consuming programs and disconnected requestors. 

Both sos-providers and app-providers do not have mutual associations prior to the 
execution of an exertion; they come together dynamically (federate) for all nested 
tasks and jobs in the exertion. 

Domain specific servicers within the federation, or task peers (taskers), execute 
task exertions. Rendezvous peers (jobbers, spacers, and catalogers) manage service 
collaborations. Providers of the Tasker, Jobber, Spacer, and Cataloger 
type are basic SOS service management providers; see Fig. 2. In the view of the P2P 
architecture [21] defined by the Servicer interface, a job can be sent to any ser-
vicer. A peer that is not a Jobber type is responsible for forwarding the job to one 
of available rendezvous peers in the SORCER environment and returning results to 
the requestor. Thus implicitly, any peer can handle any exertion type. Once the  
exertion execution is complete, the federation dissolves and the providers in the fed-
eration disperse to seek other exertions to join. 
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3.4   Federated Method Invocation 

An exertion is executed by invoking its exert operation. The SORCER Federated 
Method Invocation (FMI) defines the following three related operations:  

1. Exertion#exert(Transaction):Exertion 
join the sos-federation; the invoked exertion is bound to the available provider 
specified by the exertion’s PROCESS signature (a rendezvous provider if a job, 
otherwise a matching tasker); 

2. Servicer#service(Exertion, Transaction):Exertion 
SOS request for a service by the bound provider in 1); and if the argument 
exertion object accepted by the bound provider, then the provider calls 3) 

3. Exerter#exert(Exertion, Transaction):Exertion 
execute the argument exertion object by the service object of the provider 
accepting the service request in 2). Any component exertion of the parent 
exertion is then processed recursively by 1). 

This above triple command design pattern [22, 9] defines various implementations of 
these three interfaces: Exertion (metaprogram), Servicer (service provider—
peer), and Exerter (service object processing the data context of exertion). This 
approach allows for the P2P environment [21] via the Servicer interface, exten-
sive modularization of Exertions and Exerters, and extensibility from the triple 
command design pattern so requestors can submit onto the network any EO program 
they want with or without transactional semantics. The triple command pattern is used 
by SOS as follows: 

1. An exertion is activated by calling Exertion#exert(). The exert 
operation implemented in ServiceExertion uses ServiceAccessor to 
locate in runtime the provider matching the exertion’s PROCESS signature.  

2. If the matching provider is found, then on its access proxy the 
Service#service() method is invoked.  

3. When the requestor is authenticated and authorized by the provider to invoke the 
method defined by the exertion’s PROCESS signature, then the provider calls its 
own exert operation: Exerter#exert(). 

4. Exerter#exert() operation is implemented accordingly by 
ServiceTasker, ServiceJobber, and ServiceSpacer. A 
ServiceTasker peer calls by reflection the operation specified in the 
PROCESS signature of the task object. All application-specific methods of an 
application interface have the same signature: a single Context type parameter 
and a Context type return value. 

The exertion activated by a requestor can be submitted by SOS directly or indirectly to 
the corresponding service provider. In the direct approach, when signature’s access type 
is PUSH, SOS finds the matching service provider against the service type and attributes 
of the PROCESS signature and submits the exertion object to the matching provider. 
The execution order of multiple signatures is defined by signature priorities, if the  
exertion’s flow type is SEQUENTIAL; otherwise they are dispatched in parallel. EO 
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programming has a branch exertion (IfExertion) and loop exertions (WhileEx-
ertion, ForExertion) as well as two mechanisms for nonlinear flow control 
(BreakExertion, ContinueExertion). An exertion can reflect a process 
with branching and looping by applying control flow exertions [20].  

Alternatively, when signature’s access type is PULL, SOS uses a Spacer provider 
and simply drops the exertion into the shared exertion space to be pulled from by a 
matching provider. Spacers provide efficient load balancing for processing exertions 
from the shared space and are efficient for lengthy processes that might require ser-
vices not present at all times during the process execution. The fastest available ser-
vicer gets an exertion from the space before other overloaded or slower servicers can 
do so. When an exertion consists of component jobs with different access and flow 
types, then we have the hybrid process execution when the collaboration potentially 
executes concurrently with multiple pull and push subcollaborations at the same time. 

3.5   How to Create an Application Service? 

To complete the example given in the Introduction, let’s implement one of the arith-
metic services, for example Adder that can be used by SOS. 

A plain old Java object (POJO) becomes a SORCER service bean, injected into a 
Tasker, by implementing a Java interface (does not have to be Remote), which 
has the following characteristics: 

1. Defines the service operations you'd like to call remotely 
2. The single parameter and returned value of each operation is of the type  
sorcer.service.Context 

3. Each method must declare java.rmi.RemoteException in its throws 
clause. The method can also declare application-specific exceptions 

4. The class implementing the interface and local objects must be serializable 

Adder 

interface Adder { 
  Context add(Context context) throwsRemoteException; 
} 
The interface implementation: 
public class AdderImpl implements Adder { 
  public Context add(Context context) throws 
    RemoteException { 
      double result = 0; 
      List<Double> inputs = context.getInValues(); 
        for (Object value : inputs)  
          result += value; 
    context.putValue(context.getOutPath(), result); 
    return context; 
  } 
} 
 



 Exerted Enterprise Computing 199 

 

Finally start the Tasker with the following configuration file: 

sorcer.core.provider.ServiceProvider { 
  name = "SORCER Adder"; 
  beans = new String[]{"sorcer.arithmetic.AdderImpl"}; 
} 

The same way you can implement and deploy Multiplier and Subtractor 
and you are ready to run the SO program given in the Introduction.  

4   Conclusions 

A distributed system is not just a collection of distributed objects—it is the unreliable 
network of objects that come and go. EO programming introduces the new abstrac-
tions of service objects and exertions for unreliable networks instead of objects and 
messages in object-oriented programming. Exertions encapsulate the triplet of  
operations, data, and control strategy. From the SORCER platform point of view, an 
exertion is the expression of service composition at the programming level, the  
management federation of service objects at the operating system level, and the appli-
cation federation of service objects at the application service processor level. The 
exertions are programs that define reliable network collaborations in unreliable ser-
vice networks. The SORCER operating system manages service collaborations on its 
virtual processor—the dynamically created federations that use FMI. 

SORCER identifies a service with its service type. Applying the inversion princi-
ple, SOS looks up service objects by implemented interface types with optional search 
attributes, for example a provider name. SOS utilizes Jini-based service management 
that provides for dynamic services, mobile code shared over the network, and network 
security. Federations are aggregated from independent service-objects that do not 
require heavyweight containers like application servers. 

The presented FMI framework allows P2P computing via the Servicer inter-
face, extensive modularization of Exertions and Exerters, and extensibility 
from the triple command design pattern [20]. The SORCER platform uses a dynamic 
service discovery mechanism allowing new services to enter the network and disabled 
services to leave the network gracefully with no need for reconfiguration. This allows 
the exertion collaboration to be distributed without sacrificing the robustness of the 
service-oriented process. This architecture also improves the utilization of the net-
work resources by distributing the execution load over multiple nodes of the network. 
The exertion's federation shows resilience to service failures on the network as it can 
search for alternate services and maintain continuity of operations even during periods 
when there is no service available. 

The SORCER platform with EO programming has been successfully deployed and 
tested in multiple concurrent engineering and large-scale distributed applications [8, 
12, 29]. It is believed that incremental improvements of SPOA will not suffice, so we 
plan to continue the development of Service-Object Oriented Optimization Toolkit for 
Distributed High Fidelity Engineering Design Optimization at the Multidisciplinary 
Science and Technology Center, AFRL with three layers of programming: model-
driven programming (transdisciplinary complex processes), var-oriented program-
ming (for var multifidelity evaluations and var compositions), and exertion-oriented 
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programming (for network collaborations). We will investigate how model-driven 
programming can be used to address several fundamental challenges posed by the 
new value-filter-evaluator paradigm for real world complex optimization problems  

I began my Introduction with Edsger Dijkstra's credo: 

“Computing's core challenge is how not to make a mess of it.” 

The presented confrontation of computing and metacomputing, and the SORCER 
platform described in this paper implies that reducing both programming and metap-
rogramming to the same level of middleware programming and within the same com-
puting platform (currently common practice for building SOA), introduces intolerable 
complexity for building large-scale adaptive and dynamic enterprise systems.  
SORCER defines clearly its separate metacomputing architectural layers: SO pro-
gramming, management, and execution layers integrated via FMI. That introduces 
simplicity to the expression of SO processes at the application level using VO model-
driven with var-oriented and exertion-oriented programming. Flexible enterprise  
interoperability is achieved via SORCER three neutralities (service protocol, imple-
mentation, and location [22]) and architectural means (Fig. 4), not by neutral data 
exchange formats, e.g., XML, when overused introduce unintended complexity and 
degraded performance. 
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