

R. Meersman et al. (Eds.): OTM 2010 Workshops, LNCS 6428, pp. 182–201, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Exerted Enterprise Computing: From Protocol-Oriented
Networking to Exertion-Oriented Networking

Michael Sobolewski

SORCER Research Group
Polish-Japanese Institute of Information Technology,

Warsaw, Poland
sobol@sorcersoft.org

Abstract. Most enterprise computing programs are still not written in metapro-
gramming languages but rather composed line by line in software programming
languages as they were decades ago. These programming languages are poorly
suited to expressing enterprise processes targeted at complex, domain-specific
and transdisciplinary problems. The current state of the art is that legacy
programs and scripts can be used as programming instructions provided by
dynamic service objects. New metaprograms (programs of programs) require
relevant operating systems managing service objects as a virtual service
metaprocessor. However, there are presently no acceptable metaprogramming
methodologies to program, deploy, and dynamically federate these relevant ser-
vice objects into a virtual processor securely and efficiently with fault detection
and recovery. In this paper the emerging metacomputing SORCER platform
with its federated method invocation and exertion-oriented programming model
is contrasted with service protocol-oriented architectures (e.g., OGSA,
CORBA, RMI) which limit us to one fixed wire protocol, static network con-
figurations, and often restricts us to heavyweight containers (e.g., application
servers) for hosting service objects.

Keywords: process expression, metacomputing, service-oriented computing,
SOA, dynamic service objects.

1 Introduction

"Computing's core challenge is how not to make a mess of it." Edsger Dijkstra

Computing has evolved over centuries. It is and always has been about processes and
process expressions. The creation or activation of process expressions has changed
over time as it reflects the continuous change in problems being solved by humans
and the languages used. As a current example, UML behavior diagrams allow us to

 multiple process expressions that generalize flowchart diagrams which were
introduced by Markov in 1954 to represent "algorithms" [15, 5].

As we reach adolescence in the Internet era we are facing the dawn of the meta-
computing era, an era that will be marked not by PCs, workstations, and servers, but
by computational capability that is embedded in all things around us—virtual

 Exerted Enterprise Computing 183

computing services as programming instructions of a virtual metacomputer. The term
"metacomputing" was coined around 1987 by NCSA Director, Larry Smarr: "The
metacomputer is, simply put, a collection of computers held together by state-of-the-
art technology and balanced so that, to the individual user, it looks and acts like a
single computer. The constituent parts of the resulting metacomputer could be housed
locally, or distributed between buildings, even continents." [16]

In computing science the common thread in all computing disciplines are process
expression and actualization of process expression [5], for example:

1. An architecture is an expression of a continuously acting process to interpret
symbolically expressed processes.

2. A user interface is an expression of an interactive human-machine process.
3. A program is an expression of a computing process.
4. A programming language is an environment within which to create symbolic

process expressions.
5. A compiler is an expression of a process that translates between symbolic

process expressions in different languages.
6. An operating system is an expression of a process that manages the interpreta-

tion of other process expressions.
7. A processor is an actualization of a process.
8. An application is an expression of the application process.
9. A computing platform is an expression of a runtime process defined by its

programming language, operating system, and processor.
10. A computer is an actualization of a computing platform.
11. A metaprogram is an expression of a metaprocess, as the process of processes.
12. A metaprogramming language is an environment within which to create sym-

bolic metaprocess expressions.
13. A metaoperating system is an expression of a process that manages the inter-

pretation of other metaprocess expressions.
14. A metaprocessor is an actualization of the metaprocess on the aggregation of

distinct computers working together so that to the user it looks and operates
like a single processor.

15. A metacomputing platform is an expression of a runtime process defined by its
metaprogramming language, metaoperating system, and metaprocessor.

16. A metacomputer is an actualization of a metacomputing platform.
17. Enterprise computing is an expression of transdisciplinary enterprise

processes.

Obviously, there is an essential overlap between the domains of mathematics and
computer science, but the core concerns with the nature of process expression itself
are usually ignored in mathematics since mathematicians are concerned with the na-
ture of the behavior of a process independent of how that process is expressed. Com-
puting science is concerned with computing processes and computer science is mainly
concerned with the nature of the expression of processes independent of its process.
In Fig. 1, the difference between programming and metaprogramming is illustrated
where a metaprogram on its metaprocessor is the program of programs on multiple
processors.

184 M. Sobolewski

Fig. 1. The programming structure is indicated by yellow colors and the metaprogramming
structure by bluish colors. Programming instructions are realized by native processor instruc-
tions, but metainstructions by services (with blue outlines) invoking legacy programs (with
yellow outlines). Metaprogramming is focused on service compositions and metacomputer
engineering on construction of metaprocessors—service assemblies from other services and
modules.

Service providers expose existing programs that execute on a network of proces-
sors (see Fig. 1) as service types. These service types, e.g. Java interfaces, are imple-
mented by service objects hosted by a provider. The service objects just consume
services and provide services from and to each other respectively. Applications are
increasingly moving to the network—self aware, autonomic networks that are always
fully functional. A service provider exposes multiple interfaces implemented by its
service objects that in turn provide instructions for the service-oriented processor
(metaprocessor). Most current efforts in service systems are focused on service-
oriented engineering—constructing metaprocessors by assembling service objects
from other services and modules (e.g., OSGi, SCA, BPEL).

Thus, the metaprocessor via its operating system carries access to applications,
tools, and utilities, i.e., programs exposed by service objects. Service providers can
federate with each other dynamically to provide service collaborations—to realize a
metaprogram—the service-oriented expression of the metaprocess.

The SORCER [20-24] service-oriented system is the enterprise platform based the
service-oriented philosophy outlined above. Its architecture is derived from the
metaprogramming model with three languages that allow for model-driven program-
ming with service collaborations (Section 3.2). It supports three core neutralities [22]:
requestor/provider wire protocol [28], provider implementation, and provider location
in the network.

 Exerted Enterprise Computing 185

Let's consider the "Hello Service Arithmetic" example. Assume we have three ser-
vices on the network:
f3 = x1 - x2; f4 = x1 * x2; and f5 = x1 + x2

which implement three interfaces: Subtractor, Multiplier, and Adder, re-
spectively. We want to program a distributed service that mimics a function
composition:

f3(f4, f5) and calculate: f3(f4(10.0, 50.0), f5(20.0, 80.0))

to get 400.0 as the result of collaboration of three services: f4, f5, and f3.
Consider the equivalent service-oriented program (workflow) that can run in
SORCER:

String arg = "arg", result = "result";
String x1 = "x1", x2 = "x2", y = "y";
Task f3 = task("f3", op("subtract", Subtractor.class),
 context("subtract", in(path(arg,x1), null),
 in(path(arg,x2),null), out(path(result,y),null)));
Task f4 = task("f4", op("multiply", Multiplier.class),
 context("multiply", in(path(arg, x1), 10.0),
 in(path(arg,x2), 50.0), out(path(result,y),null)));
Task f5 = task("f5", op("add", Adder.class),
 context("add”, in(path(arg,x1), 20.0),
 in(path(arg,x2), 80.0),out(path(result,y),null)));
Job f1= job("f1",
 job("f2",f4,f5,strategy(Flow.PARALLEL, Access.PULL)),
 f3,
 pipe(out(f4, path(result,y)), in(f3, path(arg,x1))),
 pipe(out(f5, path(result,y)), in(f3, path(arg,x2))));
return value(exert(f1), path("f3", result));

The first two lines define the names of the arguments used in this program. Next,
three tasks f3, f4, and f5 are declared from which two composite services are de-
clared: f1 and f2. A few metalanguage operators are used in the program to define
services: op (short for operation) defines the service operation by its name in the
requested service type, e.g., the operation "subtract" in the Java interface Sub-
tractor.class in f3; operators in, out, and inout specify service input
and output parameters by paths in the associative array called context. The ex-
pressions that start with the operator task or job are called exertions. Exertions
specify service compositions and define the process by its control strategy expressed
by the strategy operator in jobs. Service compositions (exertions) define virtual
services created from other services. Tasks are elementary services and jobs are com-
pound services in exertion-oriented programming.

The program above defines a function composition f3:

 f3(f4(x1, x2), f5(x1, x2)),

as a SORCER service composition f1:

 f1(f2(f4(x1, x2), f5(x1, x2)), f3).

186 M. Sobolewski

Task f4 requests operation "multiply" of its arguments "arg/x1" and
"arg/x2" by the service Multiplier.class. Task f5 requests operation
"add" of its arguments "arg/x1" and "arg/x2" by service Adder.class.
Task f3 requests to "subtract" "arg/x2" from "arg/x1" by Subtrac-
tor.class where input parameter values are not defined yet. Job f2 requests
execution of both f4 and f5 with its process strategy:

 strategy (Flow.PARALLEL, Access.PULL))

This means that the component services f4 and f5 of f2 are executed in parallel
and the corresponding service objects will not be accessed directly (PUSH) by the
SORCER OS. In this case the corresponding service objects will process their tasks
via the SORCER shared exertion space (PULL) when they are available to do so [21].
The default control strategy is sequential (Flow.SEQUENTIAL) execution with
PUSH access, which is applied to job f2.

Finally the job f1, executes first job f2 and then via data pipes (defined with the
pipe operator in f1) passes the results of tasks f4 and f5 on to task f3 for
"arg/x1" and "arg/x2" correspondingly. The last statement in the above pro-
gram exerts the collaboration exert(f1). Exerting means executing the service
collaboration and returning the exertion with the processed contexts of all component
exertions along with operational details like execution states, errors, exceptions, etc.
Then it returns the value of the service collaboration f1 with the path
path("f3", result), which selects the value 400.0 from the context of
executed task f3 at the path "result". The single service activation, ex-
ert(f1), creates at runtime a dynamic federation of required collaborating services
with no network configuration. This type of process is referred to as "federated".

The rest of the paper is organized as follows: Section 2 differentiates metacomput-
ing from computing and defines metacomputing concepts used in SORCER. Section 3
presents the SORCER platform with its metaprogramming languages and metaoperat-
ing system and Subsection 3.5 illustrates how to implement service-objects to execute
the service-oriented program presented above. This is followed by concluding re-
marks and plans for future work.

2 From Computing to Metacomputing

From the very beginning of networked computing, the desire has existed to develop
protocols and methods that facilitate the ability of people and automatic processes to
share resources and information across different computing nodes in an optimized
way. As ARPANET [14] began through the involvement of the NSF to evolve into
the Internet for general use, the steady stream of ideas became a flood of techniques
to submit, control, and schedule jobs across distributed systems. The latest in these
ideas are the grid [6, 25, 26] and cloud [13], intended for use by a wide variety of
different applications in a non-hierarchical manner to provide access to powerful
aggregates of resources. Grids and clouds, in the ideal, are intended to be accessed for
computation, data storage and distribution, visualization, and display, among other
applications, without undue regard for the specific nature of the hardware and

 Exerted Enterprise Computing 187

underlying operating systems on the resources on which these jobs are carried out.
While a grid is focused on computing resource utilization, clouds are focused on
virtualization. In general, grid and cloud computing are client-server architectures that
abstract away the details of the server—one requests a resource (service), not a spe-
cific server (machine). However, both terms are vague from the point of view of
computing process expression and relevant programming models and referring to
"everything that we already do" by providing various middleware architectures that
are not only difficult to use but difficult for the end users to understand.

The concept of "middleware" has remained largely unchanged since client-server
computing emerged in the late 1980s. It's software that provides a link between sepa-
rate software applications or services. Middleware sits "in the middle" between appli-
cation software that may be executing on different operating systems. Middleware
consists of a set of services that allow multiple processes running on one or more
machines to interact. The distinction between operating system and middleware func-
tionality is, to some extent, arbitrary. Additional services provided by separately-
developed middleware can be integrated into operating systems when needed.

Either middleware or an operating system (OS) is the expression of a process that
manages the interpretation of other process expressions. Thus, to express a service-
oriented (SO) process we need a service-oriented OS, but also we need an expression
of an SO process. For the latter we need an SO program and the corresponding SO
processor to activate it according to the OS interpretation. Thus, the SO process is
expressed by three complementing each other process expressions:

1. expression of an SO process—the SO program;
2. management of the service collaboration representing the SO program—the SO

operating system; and
3. activation of the SO collaboration—the SO processor.

Service architectures can be distinguished by the type of application metaprogram-
ming language and related metaoperating system. Most existing service architectures
are focused mainly on service provider assemblies at the middleware level (OSGi
[OSGi Alliance], BPEL [11], Globus/Condor [26]), but not the metaprogramming by
end users. It is reminiscent of the 60s when job schedulers were used while operating
systems with high level programming environments were still in the development
phases and only low-level application programming for job schedulers was available.

Lack of application metaprogramming languages is the main source of confusion
regarding what SO programming is all about. It is still very difficult for most users to
create user-defined SO programs. Instead of domain-specific SO programs, detailed
and low-level programming must be carried out by the user through command line
and script execution to carefully tailor jobs on each end to the resources on which
they will run, or for the data structure that they will access. This produces frustration
on the part of the user, delays in the adoption of enterprise techniques, and a multi-
plicity of specialized “enterprise-aware” tools that are not, in fact, aware of each other
which defeats the basic purpose of the grid or cloud.

Let's consider, for example, Web Services (WS) [4], OSGi, and Jini [10, 1] archi-
tectures. Each is a service architecture but built for different service semantics. WS is
a service architecture for distributed systems that are built on a static middleware

188 M. Sobolewski

fixed on the XML/WSDL/SOAP/BPEL and running on Application Servers. OSGi is
a service architecture (at least by name) for services that are in the same process ad-
dress space. Jini is a service architecture for distributed systems that is built out of
dynamic service objects that are separated by an unreliable network [4]. Each allows
allow you to build programs out of collaborating services with detailed programming
required. Each has a completely different concept of service that the user has to be
familiar with. The major difference is in the type of collaboration you can create and
how you can create service collaborations. Also, the unreliable network (Jini) is a
very different environment [4] from the single virtual machine (OSGi), or an Applica-
tion Server used for WS deployment.

Creating a collaboration of services in any of the three environments is easy for
neither end users nor developers. Creating collaborations of services coming from all
three environments in a uniform way is not possible and no metaprogramming is
available that would differ from middleware programming. These environments are
mainly focused on metaprocessor but not on three intrinsic layers of SO computing:
SO programming (metalanguage), SO management (middleware), and SO execution
(dynamic federations of service providers).

Before we delve into the SORCER metacomputing and metaprogramming
concepts, the introduction of some terminology used throughout the paper is required:

• A computation is a process following a well-defined model that is understood and
can be symbolically expressed and physically accomplished (physically ex-
pressed). A computation can be seen as a purely physical phenomenon occurring
inside a system called a computer.

• Computing requires a computing platform (runtime) to operate. Computing
platforms that allow programs to run require a processor, operating system, and
programming environment with related tools to create symbolic process expres-
sions—programs. A computation is physically expressed by a processor and
symbolically expressed by a program.

• A distributed computation allows for sharing computing resources usually
llocated on several remote computers (compute nodes) to collaboratively run a
single complex computation in a transparent and coherent way. In distributed
computing, computations are decomposed into programs, processes, and compute
nodes.

• A metacomputer is an interconnected and balanced set of compute nodes that
operate as a single unit, which is accessible by its computing platform
(metaprocessor, metaoperating system, and metaprogramming environment).

• A metacomputation is a form of distributed computation (a computation of compu-
tations) determined by collaborating computations that a metacomputer can inter-
pret and execute. A service object selected at runtime by a metaoperating system
implements metainstructions that invoke what are usually legacy programs.

• A collection of service providers selected and managed for a metacomputation is
called a virtual metaprocessor.

• A metaprogram is an expression of metacomputation, represented in a program-
ming language, which a metacomputer follows in processing shared data for a
service collaboration managed by its metaoperating system on its virtual
metaprocessor.

 Exerted Enterprise Computing 189

• A service object is a remote object that provides services to other service objects.
Service objects are identified primarily by service types and typically do not have
a lifecycle of their own; any state they do contain tends to be an aggregate of the
states of the local entity objects that they offer to service requestors. A service
object that implements multiple interfaces provides multiple services. A service
provider makes interfaces of multiple service objects available on the network.

• A service-oriented architecture (SOA) is a software architecture using loosely
coupled service providers. The SOA integrates them into a distributed computing
system by means of SO programming. Service objects are made available as in-
dependent components that can be accessed without a priori knowledge of their
underlying platform, implementation, and location. The client-server architecture
separates a client from a server, SOA introduces a third component, a service reg-
istry. The registry allows the metaoperating system (not the end user or applica-
tion) to dynamically find service objects on the network.

• If the application (wire) protocol between requestors and all service providers is
predefined and constant then this type of SOA is called a service-protocol ori-
ented architecture (SPOA). In contrast, if the communication is based on mes-
sage passing and the wire protocol can be chosen by a provider to satisfy efficient
communication with its requestors, then the architecture is called a service-object
oriented architecture (SOOA).

Let's emphasize the major distinction between SOOA and SPOA: in SOOA, a proxy
object is created and always owned by the service provider, but in SPOA, the re-
questor creates and owns a proxy which has to meet the requirements of the protocol
that the provider and requestor agreed upon a priori. Thus, in SPOA the protocol is
always fixed, generic, and reduced to a common denominator—one size fits all—that
leads to inefficient network communication with heterogeneous large datasets. In
SOOA, each provider can decide on the most efficient protocol(s) needed for a par-
ticular distributed application. For example, SPOA wire protocols are: SOAP in Web
and Grid Services, IIOP in CORBA, JRMP in Java RMI. SORCER implements its
SOOA with the Jini service architecture [10].

The platforms and related programming models have evolved as process expres-
sion has evolved from the sequential process expression activated on a single com-
puter to the concurrent process expression activated on multiple computers. The evo-
lution in process expression introduces new platform benefits but at the same time
introduces additional programming complexity that operating systems have to deal
with. We can distinguish seven quantum jumps in process expression and related
programming complexity [22]:

1. Sequential programming (e.g., von Neumann architecture)
2. Multi-threaded programming (e.g., Java Platform)
3. Multi-process programming (e.g., Unix platform)
4. Multi-machine-process programming (e.g., CORBA)
5. Knowledge-based programming (e.g., DICEtalk [19])
6. Service-protocol oriented programming (e.g., Web and Grid Services)
7. Service-object oriented programming (e.g. SORCER)

190 M. Sobolewski

SORCER introduces an exertion-oriented (EO) programming model with federated
method invocation (FMI) in its SOOA. FMI defines the communication framework
between three SORCER architectural layers: SO programming, management, and
execution.

3 Service-Object Oriented Platform: SORCER

The term "federated" means that a single service invocation with no network configu-
ration creates at runtime a dynamic federation of required collaborating services.
SORCER (Service-ORiented Computing EnviRonment) is a federated service-to-
service (S2S) metacomputing environment that treats service providers as network
peers with well-defined semantics of a service-object oriented architecture (SOOA). It
is based on Jini semantics of services [10] in the network and the Jini programming
model [3, 1] with explicit leases, distributed events, transactions, and discovery/join
protocols. Jini focuses on service management in a networked environment, SORCER
is focused on exertion-oriented (EO) programming and the execution environment for
exertions (see Fig. 2).

Fig. 2. SORCER layered architecture, where P1 metaprocessor, P1-6 application services, P2
operating system services, P3 programming environment

3.1 Exertion-Oriented Programming

The programming example presented in the Introduction implies that an expression of
service (task or job) in the EO declarative language can be written as one line—the
feature of functional programming. For example f1 can be rewritten in one line by
substituting references to the component exertions by their corresponding expressions.

 Exerted Enterprise Computing 191

The operators in the EO language, described in the Introduction, correspond to
Java interfaces and classes [20]. The SORCER framework almost entirely designed in
terms of Java interfaces. To explain how SORCER works we will refer to a few Java
interfaces and classes in the remainder of this paper. For example, operators task
and job return objects that are defined by the Exertion interface with correspond-
ing reference implementations: ServiceTask and ServiceJob respectively.
Thus for each EO operator there is a corresponding Java object. To avoid potential
confusions of concepts with the dual representation in declarative language and im-
plementation language we will refer to a declarative language concept as defined so
far and appending "object" when referring to the corresponding Java type. For exam-
ple, an "exertion" is an expression in the EO language and an "exertion object" as one
implementing the Exertion interface.

An exertion is an expression of a service collaboration realized by both metaop-
erating system providers (in short mos-providers) and application providers (in short
app-providers). For each exertion the mos-federation is formed dynamically to reflect
the exertion's recursive service composition and control strategy [23]. The mos-
federation manages for the exertion late bindings to the required app-providers in the
dynamically formed app-federation (exertion's metaprocessor). The app-federation
represents service objects that implement all exertion operations. Thus, the mos-
federation provides the functionality of the SORCER OS (SOS) and the app-
federation provides the functionality of the SORCER metaprocessor (SMP).

Please note that exertion objects are entities that encapsulate explicitly data, opera-
tions, and control strategy. SOS uses service compositions, interfaces, and control
strategies, but data contexts and corresponding methods are used by SMP. The inter-
faces are dynamically bound to corresponding service-objects at runtime even to those
that have to be provisioned on-demand. The service objects in the app-federation
execute the exertion's operations transparently according to the exertion's control
strategy managed by SOS. The SORCER Triple Command Pattern [9] defines feder-
ated method invocation (FMI) that integrates SOS with SMP. FMI is presented in
more detail in Section. 5.4 [22]

From the SORCER platform point of view, exertions are entities at the EO pro-
gramming level, sos-federations at the SOS level, and app-federations at the SMP
level. Thus, an exertion represents the process of the cooperating SOS and SMP ser-
vice providers (see Fig. 3).

The primary difference between the sos-federation and the app-federation is man-
agement and execution. The sos-federation and the app-federation distinctions are
based on the analogies between the company management and employees. The top-
level exertion refers to the central control (the Chairman of the company—binding
the top-level exertion to SOS) of the behavior of a management system (the Chair-
man's staff—sos-federation), while the app-federation refers to the execution system
(the company employees—the service objects) that operates according to execution
rules (SORCER FMI), but without centralized control.

The SORCER SOOA consists of three major types of remote objects: service pro-
viders, registries, and proxy objects. The provider is responsible for deploying the
service on the network, publishing its proxy object to one or more registries, and
allowing requestors to access its proxy. Providers advertise their availability on the

192 M. Sobolewski

Fig. 3. Exertions and federations. The top-level exertion with component exertions is depicted
below the service cloud. Green arrows between data contexts show data flow (context pipes).
The solid red lines indicate late bindings to operating system services. Late bindings to all
application services defined by the exertion signatures are indicated by dashed lines. The pro-
viders in the cloud, in red color, form the service federation—metaprocessor.

network only while present; registries intercept these announcements and cache proxy
objects to the provider services. The requestor (e.g., exertion) discovers registries and
then looks up proxies by sending queries to registries and making selections from the
available service types. Queries contain search criteria (defined by the op operator)
related to the type and quality of service. Registries facilitate searching by storing
proxy objects of services and making them available to requestors. Providers use
discovery/join protocols to publish services on the network; requestors use discov-
ery/join protocols to obtain service proxies on the network. SORCER uses Jini dis-
covery/join protocols to implement dynamic service management for its SOS and
SMP. Exertion objects are requestors capable of dynamically finding sos-providers,
for example dynamically looking up or provisioning on-demnd Taskers and Job-
bers that in turn manage corresponding app-federations.

A task object is an elementary command managed by a SOS provider of the
Tasker type. A Tasker can provide a single service by itself or can manage a
small-scale federation for the same data context used by all providers in its federation.
A job object is defined hierarchically in terms of tasks and other jobs, including con-
trol flow exertions [22]. A job object is a composite command managed by rendez-
vous providers of Jobber, Spacer, or Cataloger type managing hierarchical
large-scale collaborations.

The exertion's data, called a data context [20], describes the data that Taskers
work on. A data context, or simply a context, is an associative array that describes

 Exerted Enterprise Computing 193

service provider ontology along with related data. A provider‘s ontology is controlled
by the provider vocabulary that describes data structures in a provider's namespace
within a specified service domain of interest. A requestor defining an exertion has to
comply with that ontology as it specifies how the context data is interpreted and used
by the provider. The notion of context is derived from the knowledge representation
scheme called percept calculus [19]. Thus, data context can be used as a knowledge
base the same way it is used in the DICEtalk platform [19] or as a var-oriented model
presented in Section 3.2.

3.2 Var-Oriented Programming

The fundamental principle of functional programming is that a computation can be
realized by composing functions. Functional programming languages consider func-
tions to be data, avoid states, and mutable values in the evaluation process in contrast
to the imperative programming style, which emphasizes changes in state values. Thus,
one can write a function that takes other functions as parameters, returning yet an-
other function. Experience suggests that functional programs are more robust and
easier to test than imperative ones.

Not all operations are mathematical functions. In nonfunctional programming lan-
guages, "functions" are subroutines that return values while in a mathematical sense a
function is a unique mapping from input values to output values. The SORCER var-
oriented (VO) framework allows one to use functions, subroutines, or coroutines in
the same way. Here the term var is used to denote a mathematical function, subrou-
tine, coroutine, or any data (object).

VO programming is a programming paradigm that treats any computation as the
triplet: value, evaluator, and filter (VEF). Evaluators and filters can be executed lo-
cally or remotely, sequentially or concurrently. In particular, evaluators and filters can
be considered as exertions, service providers, or conventional programs as indicated
by green arrows in Fig. 4. The paradigm emphasizes the usage of evaluators and a
pipeline of filters to define the variable value. Semantics of a var, whether it's a
mathematical function, subroutine, coroutine, or just a value (object) depends on the
evaluator type and pipeline of filters used with the variable. VO programming allows
for exertions to use vars in data contexts. Alternatively, data contexts (implementing
Context interface) with specialized structures of vars, called VO models, can be
used for enterprise-wide metacomputing. Three VO analysis models: response, para-
metric, and optimization have been studied already.

The variable evaluation strategy is defined as follows: the associated current
evaluator determines the variable’s raw value, and the current pipeline of filters re-
turns the output value. Multiple associations of evaluator-filter can be used with the
same var (multifidelity). Evaluator's raw value may depend on other var arguments
and those vars in turn can depend on other argument vars and so on. This var depend-
ency chaining is called VO composition and provides in SORCER the integration
framework for all possible types of computations represented by various types of
evaluators including exertion evaluators.

194 M. Sobolewski

Fig. 4. SORCER computing abstractions: model, evaluation, collaboration, and computation.
Arrows indicate associations, diamonds indicate compositions, the hollow arrow generalization,
and arrows in green color indicate various ways of var evaluation.

The same evaluator with different filters can be associated with many vars. The
modular VFE triplet structure of vars and reuse of evaluators and filters, including exer-
tion evaluators with context filters, in defining VO-oriented models is the key feature of
VO programming that complements SO programming with local computations.

VO models support multidisciplinary (vars from other models), and multifidelity
(multiple evaluators per var) computing and are called amorphous models. For the
same VO model an alternative set of evaluators (another fidelity) can be selected at
runtime to evaluate a new particular version ("shape") of the model and quickly up-
date the related process in the right evolving direction.

3.3 SORCER Operating System

The SORCER OS (SOS) allows executing service-oriented program and by itself is the
service-oriented system. The overlay network of the services defining the functionality
of SOS is called the sos-federation and the overlay network of application-specific
services is called the app-federation (see Fig. 2). The metainstruction set of the SOR-
CER metaprocessor consists of all operations offered by all services in the service fed-
eration—the union of the sos-federation and the app-federation. Thus, an EO program is
composed of metainstructions with its own control strategy per service composition and
data context representing the shared metaprogram data. Service signatures (instances of
Signature type) correspond to op operators that specify operations of collaboration
participants in the app-federation. Each signature primarily is defined by a service type,
operation in that interface, and a set of optional attributes. Four types of signatures are

 Exerted Enterprise Computing 195

distinguished: PROCESS, PREPROCESS, POSTPROCESS, and APPEND. A PROC-
ESS signature—of which there is only one allowed per exertion—defines the dynamic
late binding to a provider that implements the signature’s interface. The data context
[20] describes the data that tasks and jobs work on. An APPEND signature defines the
context received from the provider specified by this signature. The received context is
then appended in runtime to the existing data context. The resulting context is then
processed by PREPROCESS, PROCESS, and POSTPROCESS operations of the exer-
tion. Appending a data context allows a requestor to use network shared data in runtime
not available to the requestor when the exertion is declared. SOS allows for an exertion
to create and manage a service collaboration and transparently coordinate the execution
of all component exertions within the assembled federation. Please note that these meta-
computing concepts are defined differently in traditional grid computing where a job is
just an executing process for a submitted executable code with no federation being
formed for the executable—the executable becomes the single service itself.

An exertion can be activated, it means its collaboration exerted, by invoking the
exert operation on the exertion object:

 Exertion#exert(Transaction) : Exertion,

where a parameter of the Transaction type is required when a transactional se-
mantics is needed for all participating nested exertions within the parent one. Thus,
EO programming allows us to execute an exertion and invoke exertion’s signatures on
collaborating service objects indirectly, but where does the service-to-service com-
munication come into play? How do these services communicate with one another if
they are all different? Top-level communication between services, or the sending of
service requests, is done through the use of the generic Servicer interface and the
operation service that all SORCER providers are required to provide:

 Servicer#service(Exertion, Transaction):Exertion.

This top-level service operation takes an exertion object as an argument and gives
back an exertion object as the return value.

So why are exertion objects used rather than directly calling on a provider's method
and passing data contexts? There are two basic answers to this. First, passing exertion
objects helps to aid with the network-centric messaging. A service requestor can send
an exertion object implicitly out onto the network—Exertion#exert()—and
any service provider can pick it up. The receiving provider can then look at the signa-
ture's interface and operation requested within the exertion object, and if it doesn't
implement the desired interface or provide the desired method, it can continue for-
warding it to another service provider who can service it. Second, passing exertion
objects helps with fault detection and recovery. Each exertion object has its own
completion state associated with it to specify if it has yet to run, has already com-
pleted, or has failed. Since full exertion objects are both passed and returned, the user
can view the failed exertion to see what method was being called as well as what was
used in the data context input that may have caused the problem. Since exertion ob-
jects provide all the information needed to execute the exertion including its control
strategy, the user would be able to pause a job between component exertions, analyze
it and make needed updates. To figure out where to resume an exertion, the executing

196 M. Sobolewski

provider would simply have to look at the exertion’s completion states and resume the
first one that wasn't completed yet. In other words, EO programming allows the user,
not programmer to update the metaprogram on-the-fly, what practically translates into
creating new interactive collaborative applications at runtime. Applying the inversion
principle, SOS executes the exertion’s collaboration with dynamically found, if pre-
sent, or provisioned on-demand service objects. The exertion caller has no direct
dependency to service objects since the exertion uses only service types (interfaces)
they implement.

Despite the fact that any Servicer can accept any exertion, SOS services have well
defined roles in the S2S platform (see Fig. 2):

a) Taskers – accept service tasks; they are used to create application services by
dependency injection (service assembly) or by inheritance (subclassing
ServiceTasker and implementing required service interfaces);

b) Jobbers –manage service collaboration for PUSH signatures;
c) Spacers – manage service collaboration for PULL signatures using space-based

computing [7];
d) Contexters – provide data contexts for APPEND signatures;
e) FileStorers – provide access to federated file system providers [2, 27];
f) Catalogers – Servicer registries, provide management for QoS-based federations;
g) SlaMonitors - provide monitoring of SLAs [18];
h) Provisioners - provide on-demand provisioning of services by SERVME [17, 18];
i) Persisters – persist data contexts, tasks, and jobs to be reused for interactive EO

programming;
j) Relayers – gateway providers; transform exertions to native representation, for

example integration with Web services and JXTA;
k) Authenticators, Authorizers, Policers, KeyStorers – provide support for service

security;
l) Auditors, Reporters, Loggers – support for accountability, reporting, and logging

m) Griders, Callers, Methoders – support for a conventional compute grid;
n) Notifiers - use third party services for collecting provider notifications for time

consuming programs and disconnected requestors.

Both sos-providers and app-providers do not have mutual associations prior to the
execution of an exertion; they come together dynamically (federate) for all nested
tasks and jobs in the exertion.

Domain specific servicers within the federation, or task peers (taskers), execute
task exertions. Rendezvous peers (jobbers, spacers, and catalogers) manage service
collaborations. Providers of the Tasker, Jobber, Spacer, and Cataloger
type are basic SOS service management providers; see Fig. 2. In the view of the P2P
architecture [21] defined by the Servicer interface, a job can be sent to any ser-
vicer. A peer that is not a Jobber type is responsible for forwarding the job to one
of available rendezvous peers in the SORCER environment and returning results to
the requestor. Thus implicitly, any peer can handle any exertion type. Once the
exertion execution is complete, the federation dissolves and the providers in the fed-
eration disperse to seek other exertions to join.

 Exerted Enterprise Computing 197

3.4 Federated Method Invocation

An exertion is executed by invoking its exert operation. The SORCER Federated
Method Invocation (FMI) defines the following three related operations:

1. Exertion#exert(Transaction):Exertion
join the sos-federation; the invoked exertion is bound to the available provider
specified by the exertion’s PROCESS signature (a rendezvous provider if a job,
otherwise a matching tasker);

2. Servicer#service(Exertion, Transaction):Exertion
SOS request for a service by the bound provider in 1); and if the argument
exertion object accepted by the bound provider, then the provider calls 3)

3. Exerter#exert(Exertion, Transaction):Exertion
execute the argument exertion object by the service object of the provider
accepting the service request in 2). Any component exertion of the parent
exertion is then processed recursively by 1).

This above triple command design pattern [22, 9] defines various implementations of
these three interfaces: Exertion (metaprogram), Servicer (service provider—
peer), and Exerter (service object processing the data context of exertion). This
approach allows for the P2P environment [21] via the Servicer interface, exten-
sive modularization of Exertions and Exerters, and extensibility from the triple
command design pattern so requestors can submit onto the network any EO program
they want with or without transactional semantics. The triple command pattern is used
by SOS as follows:

1. An exertion is activated by calling Exertion#exert(). The exert
operation implemented in ServiceExertion uses ServiceAccessor to
locate in runtime the provider matching the exertion’s PROCESS signature.

2. If the matching provider is found, then on its access proxy the
Service#service() method is invoked.

3. When the requestor is authenticated and authorized by the provider to invoke the
method defined by the exertion’s PROCESS signature, then the provider calls its
own exert operation: Exerter#exert().

4. Exerter#exert() operation is implemented accordingly by
ServiceTasker, ServiceJobber, and ServiceSpacer. A
ServiceTasker peer calls by reflection the operation specified in the
PROCESS signature of the task object. All application-specific methods of an
application interface have the same signature: a single Context type parameter
and a Context type return value.

The exertion activated by a requestor can be submitted by SOS directly or indirectly to
the corresponding service provider. In the direct approach, when signature’s access type
is PUSH, SOS finds the matching service provider against the service type and attributes
of the PROCESS signature and submits the exertion object to the matching provider.
The execution order of multiple signatures is defined by signature priorities, if the
exertion’s flow type is SEQUENTIAL; otherwise they are dispatched in parallel. EO

198 M. Sobolewski

programming has a branch exertion (IfExertion) and loop exertions (WhileEx-
ertion, ForExertion) as well as two mechanisms for nonlinear flow control
(BreakExertion, ContinueExertion). An exertion can reflect a process
with branching and looping by applying control flow exertions [20].

Alternatively, when signature’s access type is PULL, SOS uses a Spacer provider
and simply drops the exertion into the shared exertion space to be pulled from by a
matching provider. Spacers provide efficient load balancing for processing exertions
from the shared space and are efficient for lengthy processes that might require ser-
vices not present at all times during the process execution. The fastest available ser-
vicer gets an exertion from the space before other overloaded or slower servicers can
do so. When an exertion consists of component jobs with different access and flow
types, then we have the hybrid process execution when the collaboration potentially
executes concurrently with multiple pull and push subcollaborations at the same time.

3.5 How to Create an Application Service?

To complete the example given in the Introduction, let’s implement one of the arith-
metic services, for example Adder that can be used by SOS.

A plain old Java object (POJO) becomes a SORCER service bean, injected into a
Tasker, by implementing a Java interface (does not have to be Remote), which
has the following characteristics:

1. Defines the service operations you'd like to call remotely
2. The single parameter and returned value of each operation is of the type
sorcer.service.Context

3. Each method must declare java.rmi.RemoteException in its throws
clause. The method can also declare application-specific exceptions

4. The class implementing the interface and local objects must be serializable

Adder

interface Adder {
 Context add(Context context) throwsRemoteException;
}
The interface implementation:
public class AdderImpl implements Adder {
 public Context add(Context context) throws
 RemoteException {
 double result = 0;
 List<Double> inputs = context.getInValues();
 for (Object value : inputs)
 result += value;
 context.putValue(context.getOutPath(), result);
 return context;
 }
}

 Exerted Enterprise Computing 199

Finally start the Tasker with the following configuration file:

sorcer.core.provider.ServiceProvider {
 name = "SORCER Adder";
 beans = new String[]{"sorcer.arithmetic.AdderImpl"};
}

The same way you can implement and deploy Multiplier and Subtractor
and you are ready to run the SO program given in the Introduction.

4 Conclusions

A distributed system is not just a collection of distributed objects—it is the unreliable
network of objects that come and go. EO programming introduces the new abstrac-
tions of service objects and exertions for unreliable networks instead of objects and
messages in object-oriented programming. Exertions encapsulate the triplet of
operations, data, and control strategy. From the SORCER platform point of view, an
exertion is the expression of service composition at the programming level, the
management federation of service objects at the operating system level, and the appli-
cation federation of service objects at the application service processor level. The
exertions are programs that define reliable network collaborations in unreliable ser-
vice networks. The SORCER operating system manages service collaborations on its
virtual processor—the dynamically created federations that use FMI.

SORCER identifies a service with its service type. Applying the inversion princi-
ple, SOS looks up service objects by implemented interface types with optional search
attributes, for example a provider name. SOS utilizes Jini-based service management
that provides for dynamic services, mobile code shared over the network, and network
security. Federations are aggregated from independent service-objects that do not
require heavyweight containers like application servers.

The presented FMI framework allows P2P computing via the Servicer inter-
face, extensive modularization of Exertions and Exerters, and extensibility
from the triple command design pattern [20]. The SORCER platform uses a dynamic
service discovery mechanism allowing new services to enter the network and disabled
services to leave the network gracefully with no need for reconfiguration. This allows
the exertion collaboration to be distributed without sacrificing the robustness of the
service-oriented process. This architecture also improves the utilization of the net-
work resources by distributing the execution load over multiple nodes of the network.
The exertion's federation shows resilience to service failures on the network as it can
search for alternate services and maintain continuity of operations even during periods
when there is no service available.

The SORCER platform with EO programming has been successfully deployed and
tested in multiple concurrent engineering and large-scale distributed applications [8,
12, 29]. It is believed that incremental improvements of SPOA will not suffice, so we
plan to continue the development of Service-Object Oriented Optimization Toolkit for
Distributed High Fidelity Engineering Design Optimization at the Multidisciplinary
Science and Technology Center, AFRL with three layers of programming: model-
driven programming (transdisciplinary complex processes), var-oriented program-
ming (for var multifidelity evaluations and var compositions), and exertion-oriented

200 M. Sobolewski

programming (for network collaborations). We will investigate how model-driven
programming can be used to address several fundamental challenges posed by the
new value-filter-evaluator paradigm for real world complex optimization problems

I began my Introduction with Edsger Dijkstra's credo:

“Computing's core challenge is how not to make a mess of it.”

The presented confrontation of computing and metacomputing, and the SORCER
platform described in this paper implies that reducing both programming and metap-
rogramming to the same level of middleware programming and within the same com-
puting platform (currently common practice for building SOA), introduces intolerable
complexity for building large-scale adaptive and dynamic enterprise systems.
SORCER defines clearly its separate metacomputing architectural layers: SO pro-
gramming, management, and execution layers integrated via FMI. That introduces
simplicity to the expression of SO processes at the application level using VO model-
driven with var-oriented and exertion-oriented programming. Flexible enterprise
interoperability is achieved via SORCER three neutralities (service protocol, imple-
mentation, and location [22]) and architectural means (Fig. 4), not by neutral data
exchange formats, e.g., XML, when overused introduce unintended complexity and
degraded performance.

Acknowledgments

This work was partially supported by Air Force Research Lab, Air Vehicles Directorate,
Multidisciplinary Science and Technology Center, the contract number F33615-03-D-
3307, Algorithms for Federated High Fidelity Engineering Design Optimization. I
would like to express my gratitude to all those who helped me in my SORCER research
at AFRL, GE Global Research Center, and my students at the SORCER Lab, TTU.
Especially I would like to express my gratitude to Dr. Ray Kolonay, my technical advi-
sor at AFRL/RBSD for his support, encouragement, and advice.

References

1. Apache River, http://incubator.apache.org/river/RIVER/index.html
(accessed on: August 10, 2010)

2. Berger, M., Sobolewski, M.: Lessons Learned from the SILENUS Federated File System.
In: Loureiro, G., Curran, R. (eds.) Complex Systems Concurrent Engineering, pp. 431–
440. Springer, Heidelberg (2007a)

3. Edwards, W.K.: Core Jini, 2nd edn. Prentice Hall, Englewood Cliffs (2000)
4. Fallacies of Distributed Computing (accessed on: August 10, 2010)

http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
5. Fant, K.M.: A Critical Review of the Notion of Algorithm in Computer Science. In: Pro-

ceedings of the 21st Annual Computer Science Conference, pp. 1–6 (February 1993)
6. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International J. Supercomputer Applications 15(3) (2001)
7. Freeman, E., Hupfer, S., Arnold, K.: JavaSpacesTM Principles, Patterns, and Practice. Ad-

dison-Wesley, Reading ISBN: 0-201-30955-6

 Exerted Enterprise Computing 201

8. Goel, S., Talya, S.S., Sobolewski, M.: Mapping Engineering Design Processes onto a Ser-
vice-Grid: Turbine Design Optimization. International Journal of Concurrent Engineering:
Research & Applications, Concurrent Engineering 16, 139–147 (2008)

9. Grand, M.: Patterns in Java, vol. 1. Wiley, Chichester (1999) ISBN: 0-471-25841-5
10. Jini Architecture Specification (accessed on: August 10, 2010),

http://www.jini.org/wiki/Jini_Architecture_Specification
11. Juric, M., Benny Mathew, B., Sarang, P.: Business Process Execution Language for Web

Services BPEL and BPEL4WS, 2nd edn. Packt Publishing (2006) ISBN: 978-1904811817
12. Kolonay, R.M., Thompson, E.D., Camberos, J.A., Eastep, F.: Active Control of Transpira-

tion Boundary Conditions for Drag Minimization with an Euler CFD Solver. In: 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence on AIAA 2007-1891, Honolulu, Hawaii (2007)

13. Linthicum, D.S.: Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-
Step Guide. Addison-Wesley Professional, Reading (2009) ISBN-10 0136009220

14. Lynch, D., Rose, M.T. (eds.): Internet System handbook. Addison-Wesley, Reading (1992)
15. Markov, A.A.: Theory of Algorithms, trans. by Schorr-Kon, J.J. Keter Press (1971)
16. Metacomputing: Past to Present (August 10, 2010),

http://archive.ncsa.uiuc.edu/Cyberia/MetaComp/
MetaHistory.html

17. Rio Project, http://www.rio-project.org/ (accessed on: August 10, 2010)
18. Rubach, P., Sobolewski, M.: Autonomic SLA Management in Federated Computing Envi-

ronments. In: International Conference on Parallel Processing Workshops, Vienna, Aus-
tria, pp. 314–321 (2009)

19. Sobolewski, M.: Multi-Agent Knowledge-Based Environment for Concurrent Engineering
Applications. Concurrent Engineering: Research and Applications (CERA), Technomic
(1996), http://cer.sagepub.com/cgi/content/abstract/4/1/89

20. Sobolewski, M.: Exertion Oriented Programming. IADIS 3(1), 86–109 (2008) ISBN:
ISSN: 1646-3692

21. Sobolewski, M.: Federated Collaborations with Exertions. In: 17th IEEE International
Workshop on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE), pp. 127–132 (2008)

22. Sobolewski, M.: Metacomputing with Federated Method Invocation. In: Akbar Hussain,
M. (ed.) Advances in Computer Science and IT, pp. s337–s363 (2009) In-Tech, intech-
web.org, ISBN 978-953-7619-51-0,
http://sciyo.com/articles/show/title/metacomputing-with-
federated-method-invocation (accessed on: August 10, 2010)

23. Sobolewski, M.: Object-Oriented Metacomputing with Exertions. In: Gunasekaran, A.,
Sandhu, M. (eds.) Handbook On Business Information Systems. World Scientific, Singa-
pore (2010) ISBN: 978-981-283-605-2

24. SORCERsoft, http://sorcersoft.org (accessed on: August 10, 2010)
25. Sotomayor, B., Childers, L.: Globus® Toolkit 4: Programming Java Services. Morgan

Kaufmann, San Francisco (2005)
26. Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid. In: Berman, F., Hey, A.J.G.,

Fox, G. (eds.) Grid Computing: Making The Global Infrastructure a Reality. John Wiley,
Chichester (2003)

27. Turner, A., Sobolewski, M.: FICUS—A Federated Service-Oriented File Transfer Frame-
work. In: Loureiro, G., Curran, L.,, R. (eds.) Complex Systems Concurrent Engineering,
pp. 421–430. Springer, Heidelberg (2007) ISBN: 978-1-84628-975-0

28. Waldo, J.: The End of Protocols (accessed on: August 10, 2010),
http://java.sun.com/developer/technicalArticles/jini/
protocols.html

29. Xu, W., Cha, J., Sobolewski, M.: A Service-Oriented Collaborative Design Platform for
Concurrent Engineering. Advanced Materials Research 44-46, 717–724 (2008)

