
2009 International Conference on Parallel Processing Workshops

SenSORCER: A Framework for Managing Sensor-Federated Networks

Sujit Bhosale
Computer Science, Texas Tech University

SORCER Research Group
Lubbock, USA

e-mail: sujit.bhosale@sorcersoft.org

Michael Sobolewski
Computer Science, Texas Tecƒh University

SORCER Research Group
Lubbock, USA

e-mail: sobol@sorcersoft.org

Abstract—Despite many technology advances, the limited
computing power of sensors encumber them from taking part in
service-oriented architectures. In recent years, the sensor-
networking subject has been extensively studied, with the focus
on efficient usage of energy in sensors and efficient usage of
sensor node processing power. However, providing sensor nodes
with the relevant computing power and network sensor
management is seldom addressed. With the availability of
federated meta-computing environments, sensors can participate
in service oriented computing, by exporting sensor probe data
with relevant processing as a network service. The framework
introduced in this paper allows for building highly scalable and
dynamic sensor networks, providing sensors with corresponding
federated computing environment. A novel approach using the
SORCER metacomputing model to integrate several different
sensors and sensor networks into a dynamic service-oriented
sensor network is presented. The framework makes use of
provisioning mechanism, which autonomically allocates required
resources to sensor services. Furthermore, the dynamically typed
language, Groovy, provides the runtime computing mechanism
involving variables of sensor services. The framework is generic
and extensible and allows incorporating different standard and
non-standard sensor technologies. It also helps expedite the
development process for service-to-service applications involving
sensor data.

Keywords-Sensor Networks; Service Oriented Computing;
Metacomputing

I. INTRODUCTION
Recent advances in integrated circuit technology led to

the construction of very capable and yet inexpensive sensors,
radios, and processors. That makes it possible to have
powerful spontaneously networked and mobile systems. No
doubt, the next wave of networking includes sensors and
controllers [6]. In recent years, sensor network topics have
been increasingly studied and researched, especially in the
electrical engineering and computer science areas, with the
focus on efficient usage of energy in sensors and efficient
usage of sensor node processing power. However, providing
sensor nodes with the relevant computing power issue is
largely unaddressed. A few frameworks proposed we will
review in Section 3, but those lack forming composite
sensors and autonomic provisioning of sensor services.

Our research deals with the flexible management
approach to sensor network formation problems. With the
availability of the Service-ORiented Computing
EnviRonment (SORCER) [1] sensors can participate in the
metacomputing environment by exporting not only a probe
data but a sensor data aggregation module as a service and
providing sensor management through a user friendly service
UI [20]. We can further extend this approach by exporting
multi-sensor handling module as a service in the SORCER
environment and handling the network of elementary and
aggregated sensors.

The rest of the paper is organized as follows: Section 2
gives the motivation behind the framework and Section 3
gives the overview of related work; Section 4 reviews the
background technologies; Section 5 presents design of the
framework; Section 6 gives the implementation and
experimental details, and Section 7 presents the benefits of
presented framework. Finally, paper concludes with final
remarks in Section 8.

II. MOTIVATION
Current data-aggregation models for sensors have many

limitations associated with them. An insight into these
limitations will give us better understanding of the sensor-
distributed system requirements.
1. Large header overhead of existing communication

protocols for relatively small sensor data. Sensor
networks, consisting of many low power, low capability
devices that integrate sensing, computation, and wireless
communication, pose a number of novel systems
problems. They raise new challenges for efficient
communication protocols [14, 15]. The data generated
from a single sensor at any instance is very small. To
transfer this small amount of data over the network,
header overhead of the current IP protocol is relatively
high. This makes it very difficult for many real time
applications to continuously collect data directly from
large number of individual sensors efficiently in their
applications.

2. Static topology of sensor locations and data collection
points. The static topology of sensor locations and data
collection points limit the rapid sensor data collection and
maintenance; e.g., in agricultural area, where the sensors
are located at different locations on the farms for various

2009 International Conference on Parallel Processing Workshops

measurements, the data collection specialist has to collect
the data from the sensors, directly visiting those places.
He has to connect to the sensor externally and collect the
readings. In adverse weather conditions, there are no solid
tools available for him, which can give the status
information of the sensor in place.

3. Non-standardized sensor technology. The current sensor
technologies are lacking a common open standard. There
have been attempts to specify standards for sensor
technology, but the use of such standards is very limited
by venders. One example of such standard is IEEE 1451
[16], which gives comprehensive specification for many
different sensor technologies. However, the adaptation of
this standard has been very limited. Thus, the best
approach to sensor networking should be inclusive of
various sensor technologies and general enough to switch
between the technologies transparently.

4. No efficient method of handling growing number of
sensors. As the sensor usage grows in the future, the
amount of data that these sensors generate would be
enormous. Currently, there is no solid framework
available for handling such large amounts of data that
flows from clients to servers predominantly (data flow
reversal).

5. Lack of easy sensor data availability to metacomputing
applications. Sensors because of their limited computing
ability cannot take part in meta-computing environments
as fully “fledged citizens”. As we are transforming from
static architectures towards the dynamic architectures the
sensors are required to take part in spontaneous
networking as well. Currently, no mechanism is available
by which metacomputing applications can get sensor data
on-the -fly.

6. No uniform data-aggregation interface availability. Many
applications need to collect information from several
heterogeneous sensors and sensor networks, which are
physically deployed at different places to provide
comprehensive services. To reduce the complexity of
querying from heterogeneous sensor networks, a uniform
data aggregation interface should be provided for sensor-
based applications. Currently, there is no such interface
provided by any of the available sensor-networking
technologies.
Analyzing all the limitations above, we have concluded

that, the SenSORCER framework for sensor-federated
networking is needed to allow sensors to take part in the
metacomputing environments, to cope with data flow
reversal issues along with high sensor data processing,
aggregation, and distribution capacity. Furthermore, it should
be extensible and general enough to accommodate different
standardized and non-standardized technologies, yet contain
enough concrete building blocks that developers can use to
their benefits.

III. RELATED WORK

A. A framework for a distributed sensor network based on
Jini technology [6].
This is a Jini Error! Reference source not found.

service-oriented framework for the development of a
distributed sensor network. The architecture relies on a three
level data clustering. The sensors are connected to Terminal
Communication Interface (TCI) that is able to virtualize the
access to different kinds of sensors therefore allowing all the
sensors to be accessed through consistent interface. At the
second level a Sensor Service Provider (SSP) is used to
contact different TCIs and to collect their data arranging
them in a more structured way. This allows the third level,
represented by the Application Service Provider (ASP) to
access already pre-processed data easy to manage in order to
extract more sophisticated data representation. The ASP is
the only point of access to the system so that it can enforce
specific policies [6].

The use of Jini allows this framework to provide the
service oriented architecture power to the sensors, but the
framework can only be used, as a data collection method for
the sensors. TCI registers with a lookup service, and takes
part in the data communication process and also, it is the
only component communicating with sensors. TCI is heavily
dependent upon the sensor technology used. The fact that,
TCI is burdened with the lot many responsibilities, make its
use difficult in real-time applications, where the fast sensor
value reporting is necessary. It also does not add power to
the computation part of the sensors. On the other hand, the
framework presented here, makes use of the SORCER
environment for data processing, whose Federated Method
Invocation (FMI) [1] is used as the dynamic access
mechanism of sensor data and exertion-oriented
programming [2].

The ASP is similar to a composite service provider (CSP)
in SenSORCER, but CSP is more flexible than ASP, as ASP
is only used for data processing part. The CSP on top of that,
allows a client to decide on which sensor services to use, and
what computation to be done on their data. In addition, use
of the Rio framework [4] makes dynamic provisioning
facility available in SenSORCER, which is not possible in
the framework with ASP.

B. A framework to simplify software development for
sensor network applications
This is a component-based framework, where

components provide the functionality of single sensors,
sensor nodes, and the whole sensor network [7]. The
framework uses sun’s surrogate architecture [12]. The aim is
the separation of functional blocks in order to increase
flexibility. These blocks include, Node-specific Operating
System, Driver Layer that contains at least one sensor driver
and several hardware drivers. Node-specific Operating
System handles device specific tasks.

The host middleware is the superior software layer,
which organizes the cooperation of distributed nodes in the
network. Also, the Middleware Management layer handles

2009 International Conference on Parallel Processing Workshops

other components, which can be implemented and
exchanged according to a node’s task [7].

The use of surrogate architecture, in the above
framework is well justified. However, sensor has a very
small amount of computing power, so making sensor a direct
part of network is not an effective solution. As most of the
sensors generate data at a very fast rate, the service provided
by the single sensor should be capable of storing data to the
local store. By using the surrogate architecture, the sensors
can be used in network applications, but the effective use of
such sensor node is questionable.

On the other hand, SenSORCER is independent of the
communication protocol and driver specific code of the
system. It generically wraps the code into sensor probe. The
elementary sensor service provider explained in Chapter 3,
makes use of sensor probe but is independent of sensor
technology used. This way, all the legacy sensors and their
protocols can be part of a sensor network by wrapping them
without any changes to underlying codes.

IV. RELATED TECHNOLOGIES
In this section, we introduce related terms and

technologies, which define federated metacomputing and
provide building blocks of the SenSORCER architecture.

A. Service Oriented Architecture (SOA)
In general SOA is a paradigm for organizing and utilizing

distributed capabilities that may be under the control of
different ownership domains. It provides a uniform means to
offer, discover, interact with and use capabilities to produce
desired effects consistent with measurable preconditions and
expectations [3]. SenSORCER is a sensor-distributed system
built with SOA object-oriented concepts and federated
method invocation [1].

B. Jini
In Jini Error! Reference source not found., a service is

essentially a Java interface that is implemented as a remote
object. Therefore, any object implementing multiple
interfaces could be turned into a provider of multiple
services. The Jini service-oriented architecture has a concept
of dynamic discovery and join of services whereby services
are registered on the network and discovered in real-time via
a unicast or multicast protocols on the network.

Jini provides a registry called lookup service (LUS),
which is a service registry that allows service requestors to
locate needed services by object types (interfaces) and
associated complementary attributes. During startup, a
service provider registers its services with the LUS. Service
requestors use LUSs to locate the services they are interested
in. The LUS itself is discovered through the discovery
protocols by issuing multicast or unicast requests, as well as
by receiving multicast announcements. Service requestors
and providers use the discovery protocols to locate LUSs.
When the services first enter the SenSORCR network they
receive a lease from a LUS for a specific time period that is
renewed periodically by their service provider. If the service
gets disabled then the lease is not renewed and the service is
deregistered from the LUS and thus leaves the network. This

mechanism of leasing keeps the sensor network healthy and
robust. New services entering the network become available
immediately from LUSs and the existing services that are
disabled are automatically disposed from the sensor network.

C. Rio
The Rio provisioning framework [8] provides a model to

dynamically instantiate, monitor and manage service
components as described in a deployment descriptor called
an Operational-String. The Operational-String provides
context on service requirements, dependencies, associations,
and operational parameters. Rio provisioning services
additionally provide pluggable load distribution and resource
utilization analysis mechanisms to effectively make use of
resources on the network [5]. The Rio framework allows
enabling following capabilities for the sensor services in
SenSORCER environment:

 Dynamically adapt to addition and removal of sensor

resource on the network.
 Running sensor service on the compute resource

available in the network that matches required QoS.
 Fault tolerance achieved by dynamically allocating

the service to a different compute node (cyber node),
if the original node fails.

D. SORCER
SORCER [2] (Service-Oriented Computing

EnviRonment) is a federated service-to-service (S2S)
metacomputing environment that treats service providers as
network objects with well-defined semantics of a federated
service object-oriented architecture. It is based on Jini [4]
semantics of services in the network and Jini programming
model with explicit leases, distributed events, transactions,
and discovery/join protocols. While Jini focuses on service
management in a networked environment, SORCER focuses
on metaprogramming (exertion-oriented programming) and
the execution environment for exertions [2]. SORCER uses
Jini discovery/join protocols to implement its exertion-
oriented architecture (EOA) using federated method
invocation [1], but hides all the low-level programming
details of the Jini programming model.

In EOA, a service provider is an object that accepts
remote messages from service requestors to execute a
collaboration. These messages are called service exertions
and describe service (collaboration) data, operations and
collaboration's control strategy. An exertion task (or simply
a task) is an elementary service request, a kind of an
elementary instruction executed by a single service provider
or a small-scale federation for the same service data. A
composite exertion called an exertion job (or simply a job)
is defined hierarchically in terms of tasks and other jobs,
and thus isa kind of a federated procedure executed by a
large-scale federation. The executing exertion is
dynamically bound to all required and currently available
service providers on the network. This collection of
providers identified in runtime is called the exertion

2009 International Conference on Parallel Processing Workshops

federation. The federation provides the implementation for
the collaboration as specified by its exertion. When the
federation is formed, each exertion’s operation has its
corresponding method (code) available on the network.
Thus, the network exerts the collaboration with the help of
the dynamically formed service federation. In other words,
we send the request onto the network implicitly, not to a
particular service provider explicitly.

The overlay network of service providers is called the
service grid and an exertion federation is in fact a virtual
metacomputer. The metainstruction set of the metacomputer
consists of all operations offered by all service providers in
the grid. Thus, an exertion-oriented (EO) program is
composed of metainstructions with its own control strategy
and a service context representing the metaprogram data.
The service context describes the collaboration data that
tasks and jobs work on. Each service provider offers
services to other service peers on the object-oriented overlay
network. These services are exposed indirectly by
operations in well-known public remote interfaces and
considered to be elementary (tasks) or compound (jobs)
activities in EOA. Indirectly means here, that you cannot
invoke any operation defined in provider’s interface
directly. These operations can be specified in the requestor’s
exertion only, and the exertion is passed by itself on to the
relevant service provider via the top-level Servicer
interface implemented by all service providers called
servicers—service peers. Thus all service providers in EOA
implement the
service(Exertion, Transaction) : Exertion
operation of the Servicer interface. When the servicer
accepts its received exertion, then the exertion’s operations
can be invoked by the servicer itself, if the requestor is
authorized to do so. Servicers do not have mutual
associations prior to the execution of an exertion; they come
together at runtime (federate) for a collaboration as defined
by its exertion. In EOA requestors do not have to lookup for
any network provider at all, they can submit an exertion,
onto the network by calling
Exertion.exert(Transaction : Exertion
on the exertion. The exert operation will create a required
federation that will run the collaboration as specified in the
EO program and return the resulting exertion back to the
exerting requestor. Since an exertion encapsulates
everything needed (data, operations, and control strategy)
for the collaboration, all results of the execution can be
found in the returned exertion’s service contexts.

Domain specific servicers within the federation, or task
peers (taskers), execute task exertions. Rendezvous peers
(jobbers and spacers) coordinate the execution of job
exertions. Providers of the Tasker, Jobber, and Spacer
type are three of SORCER main infrastructure servicers.

V. SENSORCER ARCHITECTURE

A. The SenSORCER approach
SenSORCER is essentially a federated SOA based

infrastructure, which allows dynamic networking between
sensor wrapping (SORCER) services. The SenSORCER
approach can be described in three steps: Measure, Compute,
and Communicate (MC2). A sensor probe would measure the
sensor data using sensor-specific technology for sensor
connectivity. A sensor service employs the probe to connect
to sensors allowing them to take part in SOA. SORCER's
exertion-oriented programming allows sensor services to
participate in collaborations, specified by exertions; to carry
out requested computing tasks. In addition, the dynamically
typed language Groovy [16] makes it easy to provide custom
compute-expressions involving sensor service variables at
runtime.

The federated method invocation carries the collaborative
communication with sensor services. The service requestor
incorporates vales from sensor providers as parameters that
are communicated to other providers in the collaboration via
the exertion's service context. SORCER defined service-to-
service (S2S) communication allows relevant services to
federate dynamically and assist in execution of exertions [2]
provided by the requestor. If for any reason, a particular
sensor service is not available, the request can be passed on
to the equivalent available service provider. The SORCER
infrastructure treats sensor providers as peers that implement
a common SensorDataAccessor interface. Here are basic
terms used in the context of the presented framework:
 Sensor Node: The entity that can take part in sensor

network, maintaining a single sensor
 Sensor Service: The service (interface), implementing

the value reading facility, connecting the single sensor
 Sensor Subnet: The logical grouping of sensor nodes
 Sensor Network: The logical grouping of sensor nodes

and sensor subnets, by a specialized composite service
 Network Management: The facility provided by the

specialized façade service, to add and remove sensor
nodes, subnets, and create dynamic grouping

B. Organizational architecture
SenSORCER is a component-based framework, where

each component is the sensor provider with façade services
as multiple entry points to the sensor network. The
SenSORCER framework is illustrated in the form of the
UML component diagram [17] in Fig. 1. The main
components along with their communication interfaces are
shown. There are three main components in the framework:

1. Elementary Sensor Services
2. Composite Sensor Services
3. SenSORCER Façade Services

 An Elementary Sensor Service (ESP) is the basic
building block of this framework. As shown in Fig. 1, a
Sensor Probe is the only sensor dependent component of the
framework. It contains sensor specific driver code, which is
used to communicate with the sensor. This component is
dependent on sensor specific protocol and underlying
technology. Communication with any sensor has many

2009 International Conference on Parallel Processing Workshops

aspects like, synchronization, timing constraints,
communication protocol, data calibration, etc. Sensor probe
is dependent on all of these aspects of the sensor, but hides
these details from sensor service providers. As shown in Fig.
1, ESP makes use of the common DataCollection interface

to connect to the sensor and read sensor data through sensor
probe. The sensor values are available to service requestors
via the common SensorDataAccessor interface.

In sensor network semantics, the ESP service plays the
role of node in the logical sensor network. When this service
is started up it registers itself with the Jini service registry.
There can be many elementary sensor services available in
the framework, with every ESP working independently,
providing single sensor connectivity. However, ESP can be
used to connect multiple sensors, if sensors have the ability
to connect themselves with other sensors, collaborate, and
make collected data available to ESP via its DataCollection
interface.

The aggregate sensor provider, Composite Sensor
Provider (CSP), plays two important roles in SenSORCER.
First, being the aggregate, it composes both ESPs and CSPs,
processes service requests, collects the sensor data from its
component sensor services, and makes its values defined in
terms of component values available via the

SensorDataAccessor interface. Thus, it performs processing
on the collected data and returns the calibrated composite
result to service requestors. In the second role, as a child,
CSP can be a part of another CSP and in that case provides
the calibrated result to its parent CSP.

CSP’s ability to contain other CSPs along with ESPs
makes logical sensor networking possible. Thus, the
semantics of network management in SenSORCER is
reduced to the management of a single CSP. The user of the
system can add or remove sensor nodes from the network, by
interacting and issuing requests to a single CSP. CSP
management is sensor independent; one can change
contained provider's implementation, and can use different
sensors, without potentially affecting the CSP provider.

Sensor Computation provides capabilities of specifying
required computing power to CSPs. It performs the user
specified computation on to sensor data. The user can
provide expressions, treating services as the variables inside
the CSP expression. CSP replaces service variables with the
actual values from component sensor services and then
computes the expression as complex as required, which is
then sent back to the requestor.

The user can interact with SenSORCER through a user
agent attached to the Sensorcer Façade provider. When user

Figure 1. SenSORCER architecture - UML component diagram

2009 International Conference on Parallel Processing Workshops

wants to make use of any management functionality of the
SenSORCER system, he opens zero-install user interface
called a Sensor Browser in a Jini service browser, for
example Inca X [18], as illustrated in Fig. 2. The design of
the browser follows the MVC pattern [21]. Its model
contains the data of the sensor network configuration, views
display the data in appropriate format, and controller
providers mapping between the network model and browser
views.

The Sensorcer Façade is the single entry point of the
SenSORCER system. It provides a uniform access to the
user through the Sensor Browser. The Façade uses a Sensor
Network Manager to provide the CSP network management
functionality. These network management functionality is
carried out using Service Accessor and Sensor Service
Provisioner components.

A Service Accessor finds service providers using the Jini
Lookup Services. First, it discovers lookup services and then
finds matching services specified by signatures in exertions.
A Sensor Service Provisioner provides for provisioning of
sensor services based on quality of service specified by
requestors according to the Rio framework. Thus, dynamic
network formation of sensors in SenSORCER dynamically
allocates a CSP to the capable cybernode (the Rio compute
node) with operational specifications provided by the
requestor.

VI. IMPLEMENTATION
The SenSORCER framework has been implemented

using Java, SORCER, Jini, Rio, and Groovy and deployed in
SORCER Lab, Texas Tech University [19]. For the
experimental purpose we used temperature sensors built in
into SUN’s Programmable Object Technology (SUN SPOT)
device [10, 11]. Implementation also supports arithmetic

expression evaluation, the sensor computation mechanism
available for composite service providers. Fig. 2 illustrates
the Inca X browser [18] displaying all currently available
services in the sensor network. The notable are Jini
infrastructure services (Lookup Discovery, Event Mailbox,
and Lease Renewal services), Rio provisioning services (two
Cybernodes and one Monitor - provisioning service). Four
elementary sensor services are individually connected to four
temperature sensors (Neem-Sensor, Jade-Sensor, Coral-
Sensor, and Diamond-Sensor). In addition, one composite
sensor service (Composite-Service) and one façade service
(SenSORCER Façade) is also visible. The view shown on
the right side of service list in Fig. 2 is the sensor browser
interface attached the façade service. In Fig. 2 also the subnet
formation with composite service is shown. The steps to
carry out experiment are as follow:
1. As shown in Fig. 3, using composite service

(Composite-Service), we formed a sensor subnet with
three elementary sensor services (Neem-Sensor, Jade-
Sensor, and Diamond-Sensor).

2. Associated a compute-expression to report average
temperature of these three individual sensors (“(a + b +
c)/3”).

3. Provisioned a new composite service on to the network
(New-Composite).

4. Using provisioned service, we formed sensor network
with one composite (subnet formed in step 1) and
remaining elementary sensor service (Coral-Sensor).

5. Associated expression with provisioned service to take
average of two composed services from step 4 (“(a +
b)/2”).

Figure 2. SenSORCER services

2009 International Conference on Parallel Processing Workshops

6. As shown in Fig. 3, read Sensor Value from newly
created composite service.

Fig. 3 displays the snapshot after step 6. The provisioned
sensor service (New-Composite) is also visible as the
registered service with the lookup service. On “Sensor
Value” section we can see the average temperature values of
all the sensors available in the system. The temperature
values read from the other sensor services are also listed.
“Sensor Service Information” section displays the composed
service in step 4 and associated expression in step 5. The
variables that are used in the expression are created
dynamically, as the services are added into the composite
provider. For example, in Fig. 3, variable ‘a’ and ‘b’ are
created dynamically, when the two services are added into
the provisioned composite service. (‘a’ is created for
Composite-Sensor service and ‘b’ is created for Coral-Sensor
service).

VII. SENSORCER BENEFITS
From the architecture point of view one can easily make

out that the sensor probe is the only sensor dependent
component. Applications written for sensor data are
independent of the sensor technology used. In addition,
sensor services themselves make use of sensor probes, so
they are only concerned with sensor probe’s interface, which
does not dependent on a particular sensor technology, thus,
achieving probe independent service providers. One can
easily change the existing implementation and technologies

of the sensors used and still keep up with rapid evolution of
the sensor technology.

One of the core challenges of sensor application design is
balancing the resource usage of individual nodes with the
global behavior of the desired network [15]. SenSORCER
makes use of federated metacomputing environment, which
offers dynamic federation of the services to complete
complex and scalable tasks [9]. In addition, runtime network
management makes the scalability and dynamic networking
easier. There is no need to make any change to the physical
network resources, as all we do is changing the logical
network arrangements. The use of Rio provisioning allows
for dynamic and failure resilient network creation on-the-fly.
As the computing resources spread across the network and
service providers can be associated with different compute
resources, addition of new sensor services does not
necessarily affect the performance of the system. The Rio
framework allows for allocating the sensor service to the best
compute resource (cybernode) from the available network
resources at hand, alleviating the application design and
development from usually required resource management.

The sensor network administration has two aspects, one
is hardware related which has to be taken care at the
particular location and with the sensor device physically. The
other is software configuration and network management.
For latter, all the sensor service administration is available
for the user via the provided Sensor Browser (see Fig. 2).

Figure 3. Logical sensor networking

2009 International Conference on Parallel Processing Workshops

The Sensor Browser is a very lightweight and zero-install
service UI [20]; it does not contain any heavy processing
components. For the most part, the service UI just takes the
input from the user and gives back result from the
SenSORCER network. The associated compute hosts run the
available sensor services; nevertheless, the Sensor Browser
can run even on mobile devices.

The user can collect the data from different sensor
services directly or it can make use of composite provider, to
make it go to the different providers. This service-to-service
communication makes it possible to transfer data from node
to node without any user intervention. If user wants to get
data from different services and perform some computation,
he can create a composite service provider to do this task.

This way, we can manage the data generated from
different services, allowing various services to take part in
both communication and computation processes.

The plug-and-play feature is very useful in sensor
networks, as after the initial installation and configuration of
the system, the addition and removal of sensors is more
frequent. Plug-and-play of discoverable services with Jini
lookup services allows any sensor service to appear and go
away in the network dynamically. Since SenSORCER is
based on the Jini infrastructure, the sensor services can come
and go. If a service goes down the node is terminated and
when it is up the node is immediately available in the
network.

VIII. CONCLUSIONS
This paper highlights the issues involved in designing

and implementing federated sensor systems and
demonstrates the feasibility of such deployment for
metacomputing sensor environments. The presented
SenSORCER architecture shares the attributes of P2P
systems, dynamic service object oriented programming, and
inheriting the security provided by Java/Jini security services
along with exertion-oriented programming. It is modularized
into a collection of sensor providers (ESPs and CSPs) with
multiple remote SenSORCER Façades. Façades supply with
a uniform access points via their smart proxies available
dynamically to service requestors. A façade smart proxy
encapsulates inner proxies to federating providers accessed
directly (P2P) by requestors. The experimental sensor
services have been successfully deployed as SORCER
services and we are planning for large-scale air vehicles
distributed applications. The SenSORCER network scales
very well with the Rio provisioning support to satisfy the
needs of current users and service requestors. The system
handles very well several types of network and computer
outages by utilizing the Jini infrastructure and dynamic
exertion-oriented programming model. It provides a zero-
install sensor browser (service UI) attached to the
SenSORCER Façade that provides sensor network
management facility.

ACKNOWLEDGMENT
This work was partially supported by Air Force Research

Lab, Air Vehicles Directorate, Multidisciplinary Technology

Center, the contract number F33615-03-D-3307, Service-
Oriented Optimization Toolkit for Distributed High Fidelity
Engineering Design Optimization.

REFERENCES
[1] M. Sobolewski, “SORCER: computing and metacomputing

intergrid,” Proc. 10th International Conference on Enterprise
Information Systems, Barcelona, Spain, 2008, pp. 74-85.

[2] M. Sobolewski, “Exertion-oriented programming,” 2008, IADIS, vol.
3 no. 1, pp. 86-109, ISBN: 1646-3692.

[3] Definition of SOA from “Organization for the advancement of
structured information standards”. Retrieved April 12, 2009, from
http://www.oasis-open.org/committees/tc_cat.php?cat=soa.

[4] W.K. Edwards, "Core Jini", 2nd ed., Pren-tice Hall, ISBN: 0-13-
089408, 2000.

[5] Rio overview. Retrieved April 12, 2009, from
https://rio.dev.java.net/overview.html

[6] M. Bertocco, S. Cappellazzo, C. Narduzzi, M. Parvis, "A distributed
sensor network based on Jini Technology", VIMS 2002 IEEE
International Symposium on Virtual and Intelligent Measurement
Systems, 2002, pp. 68-71.

[7] J. Blumenthal, M. Handy, F. Golatowski, M. Haase, D. Timmermann,
"Wireless sensor networks - new challenges in software engineering",
Proceedings of Emerging Technologies and Factory Automation,
2003 (ETFA '03), IEEE Conference, 2003, vol. 1, pp. 551-556.

[8] Rio architecture overview. Retrieved April 12, 2009, from
http://www.sun.com/software/jini/whitepapers/rio_architecture_overv
iew.pdf

[9] M. Sobolewski, "Federated collaborations with exertions", 17h IEEE
International Workshop on Enabling Technologies: Infrastructures for
Collaborative Enterprises, Rome, Italy, 2008.

[10] Sun™ Small Programmable Object Technology (Sun SPOT)
Developer’s Guide. Retrieved 12 April, 2009, from
http://www.sunspotworld.com/docs/Purple/spot-developers-guide.pdf

[11] Sun SPOT Overview. 12 April, 2009, from
http://www.sunspotworld.com/

[12] The Jini Technology Surrogate Architecture Overview [PDF
document]. Retrieved April 12, 2009 from
https://surrogate.dev.java.net/doc/overview.pdf

[13] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. "Energy
efficient communication protocol for wireless micro-sensor
networks", Proc. the 33rd Hawaii International Conference on System
Sciences (HICSS), January 2000.

[14] A.Woo T.Tong, and D.Culler, "Taming the underlying challenges of
reliable multi-hop routing in sensor networks", Proc. the First ACM
Conference on Embedded Networked Sensor Systems (SenSys2003),
November 2003.

[15] G. Mainland, D. C. Parkes, and M. Welsh, "Decentralized, adaptive
resource allocation for sensor networks", Division of Engineering and
Applied Sciences, Harvard University, IEEE1451. Retrieved April
12, 2009, from
http://www.completetest.com/IEEE1451_overview.htm

[16] D. Koenig, A. Glover, P. King, G. Laforge, J. Skeet, "Groovy in
action", New York: Manning Publications, 2007.

[17] UML 2.0 infrastructure specification [PDF. Retrieved April 12, 2009,
from http://www.omg.org/docs/formal/03-03-01.pdf

[18] Inca X service browser. Retrieved April 12, 2009, from
http://www.incax.com/pdf/Jini-browser.pdf

[19] Laboratory for Service-ORiented Computing EnviRonment
(SORCER). Retrieved April 12, 2009, from http://sorcer.cs.ttu.edu/

[20] The ServiceUI Project. Retrieved April 12, 2009, from
http://www.artima.com/jini/serviceui/

[21] M. Grand, "Patterns in Java", Volume 1, Wiley, ISBN: 0-471-25841-
5, 1999.

2009 International Conference on Parallel Processing Workshops

