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Abstract—Despite many technology advances, the limited 
computing power of sensors encumber them from taking part in 
service-oriented architectures. In recent years, the sensor-
networking subject has been extensively studied, with the focus 
on efficient usage of energy in sensors and efficient usage of 
sensor node processing power. However, providing sensor nodes 
with the relevant computing power and network sensor 
management is seldom addressed. With the availability of 
federated meta-computing environments, sensors can participate 
in service oriented computing, by exporting sensor probe data 
with relevant processing as a network service. The framework 
introduced in this paper allows for building highly scalable and 
dynamic sensor networks, providing sensors with corresponding 
federated computing environment. A novel approach using the 
SORCER metacomputing model to integrate several different 
sensors and sensor networks into a dynamic service-oriented 
sensor network is presented. The framework makes use of 
provisioning mechanism, which autonomically allocates required 
resources to sensor services. Furthermore, the dynamically typed 
language, Groovy, provides the runtime computing mechanism 
involving variables of sensor services. The framework is generic 
and extensible and allows incorporating different standard and 
non-standard sensor technologies. It also helps expedite the 
development process for service-to-service applications involving 
sensor data. 

Keywords-Sensor Networks; Service Oriented Computing; 
Metacomputing 

I.  INTRODUCTION 
Recent advances in integrated circuit technology led to 

the construction of very capable and yet inexpensive sensors, 
radios, and processors. That makes it possible to have 
powerful spontaneously networked and mobile systems. No 
doubt, the next wave of networking includes sensors and 
controllers [6]. In recent years, sensor network topics have 
been increasingly studied and researched, especially in the 
electrical engineering and computer science areas, with the 
focus on efficient usage of energy in sensors and efficient 
usage of sensor node processing power. However, providing 
sensor nodes with the relevant computing power issue is 
largely unaddressed. A few frameworks proposed we will 
review in Section 3, but those lack forming composite 
sensors and autonomic provisioning of sensor services.  

Our research deals with the flexible management 
approach to sensor network formation problems. With the 
availability of the Service-ORiented Computing 
EnviRonment (SORCER) [1] sensors can participate in the 
metacomputing environment by exporting not only a probe 
data but a sensor data aggregation module as a service and 
providing sensor management through a user friendly service 
UI [20]. We can further extend this approach by exporting 
multi-sensor handling module as a service in the SORCER 
environment and handling the network of elementary and 
aggregated sensors. 

The rest of the paper is organized as follows: Section 2 
gives the motivation behind the framework and Section 3 
gives the overview of related work; Section 4 reviews the 
background technologies; Section 5 presents design of the 
framework; Section 6 gives the implementation and 
experimental details, and Section 7 presents the benefits of 
presented framework. Finally, paper concludes with final 
remarks in Section 8. 

II. MOTIVATION 
Current data-aggregation models for sensors have many 

limitations associated with them. An insight into these 
limitations will give us better understanding of the sensor- 
distributed system requirements.  
1. Large header overhead of existing communication 

protocols for relatively small sensor data. Sensor 
networks, consisting of many low power, low capability 
devices that integrate sensing, computation, and wireless 
communication, pose a number of novel systems 
problems. They raise new challenges for efficient 
communication protocols [14, 15]. The data generated 
from a single sensor at any instance is very small. To 
transfer this small amount of data over the network, 
header overhead of the current IP protocol is relatively 
high. This makes it very difficult for many real time 
applications to continuously collect data directly from 
large number of individual sensors efficiently in their 
applications. 

2. Static topology of sensor locations and data collection 
points. The static topology of sensor locations and data 
collection points limit the rapid sensor data collection and 
maintenance; e.g., in agricultural area, where the sensors 
are located at different locations on the farms for various 
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measurements, the data collection specialist has to collect 
the data from the sensors, directly visiting those places. 
He has to connect to the sensor externally and collect the 
readings. In adverse weather conditions, there are no solid 
tools available for him, which can give the status 
information of the sensor in place. 

3. Non-standardized sensor technology. The current sensor 
technologies are lacking a common open standard. There 
have been attempts to specify standards for sensor 
technology, but the use of such standards is very limited 
by venders. One example of such standard is IEEE 1451 
[16], which gives comprehensive specification for many 
different sensor technologies. However, the adaptation of 
this standard has been very limited. Thus, the best 
approach to sensor networking should be inclusive of 
various sensor technologies and general enough to switch 
between the technologies transparently. 

4. No efficient method of handling growing number of 
sensors. As the sensor usage grows in the future, the 
amount of data that these sensors generate would be 
enormous. Currently, there is no solid framework 
available for handling such large amounts of data that 
flows from clients to servers predominantly (data flow 
reversal).  

5. Lack of easy sensor data availability to metacomputing 
applications. Sensors because of their limited computing 
ability cannot take part in meta-computing environments 
as fully “fledged citizens”. As we are transforming from 
static architectures towards the dynamic architectures the 
sensors are required to take part in spontaneous 
networking as well. Currently, no mechanism is available 
by which metacomputing applications can get sensor data 
on-the -fly. 

6. No uniform data-aggregation interface availability. Many 
applications need to collect information from several 
heterogeneous sensors and sensor networks, which are 
physically deployed at different places to provide 
comprehensive services. To reduce the complexity of 
querying from heterogeneous sensor networks, a uniform 
data aggregation interface should be provided for sensor-
based applications. Currently, there is no such interface 
provided by any of the available sensor-networking 
technologies. 
Analyzing all the limitations above, we have concluded 

that, the SenSORCER framework for sensor-federated 
networking is needed to allow sensors to take part in the 
metacomputing environments, to cope with data flow 
reversal issues along with high sensor data processing, 
aggregation, and distribution capacity. Furthermore, it should 
be extensible and general enough to accommodate different 
standardized and non-standardized technologies, yet contain 
enough concrete building blocks that developers can use to 
their benefits. 

III. RELATED WORK 

A. A framework for a distributed sensor network based on 
Jini technology [6]. 
This is a Jini Error! Reference source not found. 

service-oriented framework for the development of a 
distributed sensor network. The architecture relies on a three 
level data clustering. The sensors are connected to Terminal 
Communication Interface (TCI) that is able to virtualize the 
access to different kinds of sensors therefore allowing all the 
sensors to be accessed through consistent interface.  At the 
second level a Sensor Service Provider (SSP) is used to 
contact different TCIs and to collect their data arranging 
them in a more structured way. This allows the third level, 
represented by the Application Service Provider (ASP) to 
access already pre-processed data easy to manage in order to 
extract more sophisticated data representation. The ASP is 
the only point of access to the system so that it can enforce 
specific policies [6]. 

The use of Jini allows this framework to provide the 
service oriented architecture power to the sensors, but the 
framework can only be used, as a data collection method for 
the sensors. TCI registers with a lookup service, and takes 
part in the data communication process and also, it is the 
only component communicating with sensors. TCI is heavily 
dependent upon the sensor technology used. The fact that, 
TCI is burdened with the lot many responsibilities, make its 
use difficult in real-time applications, where the fast sensor 
value reporting is necessary. It also does not add power to 
the computation part of the sensors. On the other hand, the 
framework presented here, makes use of the SORCER 
environment for data processing, whose Federated Method 
Invocation (FMI) [1] is used as the dynamic access 
mechanism of sensor data and exertion-oriented 
programming [2]. 

The ASP is similar to a composite service provider (CSP) 
in SenSORCER, but CSP is more flexible than ASP, as ASP 
is only used for data processing part. The CSP on top of that, 
allows a client to decide on which sensor services to use, and 
what computation to be done on their data. In addition, use 
of the Rio framework [4] makes dynamic provisioning 
facility available in SenSORCER, which is not possible in 
the framework with ASP. 

B.  A framework to simplify software development for 
sensor network applications  
This is a component-based framework, where 

components provide the functionality of single sensors, 
sensor nodes, and the whole sensor network [7]. The 
framework uses sun’s surrogate architecture [12]. The aim is 
the separation of functional blocks in order to increase 
flexibility. These blocks include, Node-specific Operating 
System, Driver Layer that contains at least one sensor driver 
and several hardware drivers. Node-specific Operating 
System handles device specific tasks. 

The host middleware is the superior software layer, 
which organizes the cooperation of distributed nodes in the 
network. Also, the Middleware Management layer handles 
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other components, which can be implemented and 
exchanged according to a node’s task [7]. 

The use of surrogate architecture, in the above 
framework is well justified. However, sensor has a very 
small amount of computing power, so making sensor a direct 
part of network is not an effective solution. As most of the 
sensors generate data at a very fast rate, the service provided 
by the single sensor should be capable of storing data to the 
local store. By using the surrogate architecture, the sensors 
can be used in network applications, but the effective use of 
such sensor node is questionable. 

On the other hand, SenSORCER is independent of the 
communication protocol and driver specific code of the 
system. It generically wraps the code into sensor probe. The 
elementary sensor service provider explained in Chapter 3, 
makes use of sensor probe but is independent of sensor 
technology used. This way, all the legacy sensors and their 
protocols can be part of a sensor network by wrapping them 
without any changes to underlying codes. 

IV. RELATED TECHNOLOGIES  
In this section, we introduce related terms and 

technologies, which define federated metacomputing and 
provide building blocks of the SenSORCER architecture. 

A.  Service Oriented Architecture (SOA) 
In general SOA is a paradigm for organizing and utilizing 

distributed capabilities that may be under the control of 
different ownership domains. It provides a uniform means to 
offer, discover, interact with and use capabilities to produce 
desired effects consistent with measurable preconditions and 
expectations [3]. SenSORCER is a sensor-distributed system 
built with SOA object-oriented concepts and federated 
method invocation [1].  

B.  Jini 
In Jini Error! Reference source not found., a service is 

essentially a Java interface that is implemented as a remote 
object. Therefore, any object implementing multiple 
interfaces could be turned into a provider of multiple 
services. The Jini service-oriented architecture has a concept 
of dynamic discovery and join of services whereby services 
are registered on the network and discovered in real-time via 
a unicast or multicast protocols on the network.  

Jini provides a registry called lookup service (LUS), 
which is a service registry that allows service requestors to 
locate needed services by object types (interfaces) and 
associated complementary attributes. During startup, a 
service provider registers its services with the LUS. Service 
requestors use LUSs to locate the services they are interested 
in. The LUS itself is discovered through the discovery 
protocols by issuing multicast or unicast requests, as well as 
by receiving multicast announcements. Service requestors 
and providers use the discovery protocols to locate LUSs. 
When the services first enter the SenSORCR network they 
receive a lease from a LUS for a specific time period that is 
renewed periodically by their service provider. If the service 
gets disabled then the lease is not renewed and the service is 
deregistered from the LUS and thus leaves the network. This 

mechanism of leasing keeps the sensor network healthy and 
robust. New services entering the network become available 
immediately from LUSs and the existing services that are 
disabled are automatically disposed from the sensor network.  

C.  Rio 
The Rio provisioning framework [8] provides a model to 

dynamically instantiate, monitor and manage service 
components as described in a deployment descriptor called 
an Operational-String. The Operational-String provides 
context on service requirements, dependencies, associations, 
and operational parameters. Rio provisioning services 
additionally provide pluggable load distribution and resource 
utilization analysis mechanisms to effectively make use of 
resources on the network [5]. The Rio framework allows 
enabling following capabilities for the sensor services in 
SenSORCER environment: 

 
 Dynamically adapt to addition and removal of sensor 

resource on the network. 
 Running sensor service on the compute resource 

available in the network that matches required QoS. 
 Fault tolerance achieved by dynamically allocating 

the service to a different compute node (cyber node), 
if the original node fails. 

D.  SORCER 
SORCER [2] (Service-Oriented Computing 

EnviRonment) is a federated service-to-service (S2S) 
metacomputing environment that treats service providers as 
network objects with well-defined semantics of a federated 
service object-oriented architecture. It is based on Jini [4] 
semantics of services in the network and Jini programming 
model with explicit leases, distributed events, transactions, 
and discovery/join protocols. While Jini focuses on service 
management in a networked environment, SORCER focuses 
on metaprogramming (exertion-oriented programming) and 
the execution environment for exertions [2]. SORCER uses 
Jini discovery/join protocols to implement its exertion-
oriented architecture (EOA) using federated method 
invocation [1], but hides all the low-level programming 
details of the Jini programming model.  

In EOA, a service provider is an object that accepts 
remote messages from service requestors to execute a 
collaboration. These messages are called service exertions 
and describe service (collaboration) data, operations and 
collaboration's control strategy. An exertion task (or simply 
a task) is an elementary service request, a kind of an 
elementary instruction executed by a single service provider 
or a small-scale federation for the same service data. A 
composite exertion called an exertion job (or simply a job) 
is defined hierarchically in terms of tasks and other jobs, 
and thus isa kind of a federated procedure executed by a 
large-scale federation. The executing exertion is 
dynamically bound to all required and currently available 
service providers on the network. This collection of 
providers identified in runtime is called the exertion 
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federation. The federation provides the implementation for 
the collaboration as specified by its exertion. When the 
federation is formed, each exertion’s operation has its 
corresponding method (code) available on the network. 
Thus, the network exerts the collaboration with the help of 
the dynamically formed service federation. In other words, 
we send the request onto the network implicitly, not to a 
particular service provider explicitly.  

The overlay network of service providers is called the 
service grid and an exertion federation is in fact a virtual 
metacomputer. The metainstruction set of the metacomputer 
consists of all operations offered by all service providers in 
the grid. Thus, an exertion-oriented (EO) program is 
composed of metainstructions with its own control strategy 
and a service context representing the metaprogram data. 
The service context describes the collaboration data that 
tasks and jobs work on. Each service provider offers 
services to other service peers on the object-oriented overlay 
network. These services are exposed indirectly by 
operations in well-known public remote interfaces and 
considered to be elementary (tasks) or compound (jobs) 
activities in EOA. Indirectly means here, that you cannot 
invoke any operation defined in provider’s interface 
directly. These operations can be specified in the requestor’s 
exertion only, and the exertion is passed by itself on to the 
relevant service provider via the top-level Servicer 
interface implemented by all service providers called 
servicers—service peers. Thus all service providers in EOA 
implement the 
service(Exertion, Transaction) : Exertion 
operation of the Servicer interface. When the servicer 
accepts its received exertion, then the exertion’s operations 
can be invoked by the servicer itself, if the requestor is 
authorized to do so. Servicers do not have mutual 
associations prior to the execution of an exertion; they come 
together at runtime (federate) for a collaboration as defined 
by its exertion. In EOA requestors do not have to lookup for 
any network provider at all, they can submit an exertion, 
onto the network by calling 
Exertion.exert(Transaction : Exertion  
on the exertion. The exert operation will create a required 
federation that will run the collaboration as specified in the 
EO program and return the resulting exertion back to the 
exerting requestor. Since an exertion encapsulates 
everything needed (data, operations, and control strategy) 
for the collaboration, all results of the execution can be 
found in the returned exertion’s service contexts. 

Domain specific servicers within the federation, or task 
peers (taskers), execute task exertions. Rendezvous peers 
(jobbers and spacers) coordinate the execution of job 
exertions. Providers of the Tasker, Jobber, and Spacer 
type are three of SORCER main infrastructure servicers. 

V. SENSORCER ARCHITECTURE 

A. The SenSORCER approach 
SenSORCER is essentially a federated SOA based 

infrastructure, which allows dynamic networking between 
sensor wrapping (SORCER) services. The SenSORCER 
approach can be described in three steps: Measure, Compute, 
and Communicate (MC2). A sensor probe would measure the 
sensor data using sensor-specific technology for sensor 
connectivity. A sensor service employs the probe to connect 
to sensors allowing them to take part in SOA. SORCER's 
exertion-oriented programming allows sensor services to 
participate in collaborations, specified by exertions; to carry 
out requested computing tasks. In addition, the dynamically 
typed language Groovy [16] makes it easy to provide custom 
compute-expressions involving sensor service variables at 
runtime. 

The federated method invocation carries the collaborative 
communication with sensor services. The service requestor 
incorporates vales from sensor providers as parameters that 
are communicated to other providers in the collaboration via 
the exertion's service context. SORCER defined service-to-
service (S2S) communication allows relevant services to 
federate dynamically and assist in execution of exertions [2] 
provided by the requestor. If for any reason, a particular 
sensor service is not available, the request can be passed on 
to the equivalent available service provider. The SORCER 
infrastructure treats sensor providers as peers that implement 
a common SensorDataAccessor interface. Here are basic 
terms used in the context of the presented framework: 
 Sensor Node: The entity that can take part in sensor 

network, maintaining a single sensor 
 Sensor Service: The service (interface), implementing 

the value reading facility, connecting the single sensor 
 Sensor Subnet: The logical grouping of sensor nodes 
 Sensor Network: The logical grouping of sensor nodes 

and sensor subnets, by a specialized composite service 
 Network Management: The facility provided by the 

specialized façade service, to add and remove sensor 
nodes, subnets, and create dynamic grouping 

B.  Organizational architecture 
SenSORCER is a component-based framework, where 

each component is the sensor provider with façade services 
as multiple entry points to the sensor network. The 
SenSORCER framework is illustrated in the form of the 
UML component diagram [17] in Fig. 1. The main 
components along with their communication interfaces are 
shown. There are three main components in the framework: 

1. Elementary Sensor Services 
2. Composite Sensor Services 
3. SenSORCER Façade Services 

 An Elementary Sensor Service (ESP) is the basic 
building block of this framework. As shown in Fig. 1, a 
Sensor Probe is the only sensor dependent component of the 
framework. It contains sensor specific driver code, which is 
used to communicate with the sensor. This component is 
dependent on sensor specific protocol and underlying 
technology. Communication with any sensor has many 
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aspects like, synchronization, timing constraints, 
communication protocol, data calibration, etc. Sensor probe 
is dependent on all of these aspects of the sensor, but hides 
these details from sensor service providers. As shown in Fig. 
1, ESP makes use of the common DataCollection interface 

to connect to the sensor and read sensor data through sensor 
probe. The sensor values are available to service requestors 
via the common SensorDataAccessor interface. 

In sensor network semantics, the ESP service plays the 
role of node in the logical sensor network. When this service 
is started up it registers itself with the Jini service registry. 
There can be many elementary sensor services available in 
the framework, with every ESP working independently, 
providing single sensor connectivity. However, ESP can be 
used to connect multiple sensors, if sensors have the ability 
to connect themselves with other sensors, collaborate, and 
make collected data available to ESP via its DataCollection 
interface. 

The aggregate sensor provider, Composite Sensor 
Provider (CSP), plays two important roles in SenSORCER. 
First, being the aggregate, it composes both ESPs and CSPs, 
processes service requests, collects the sensor data from its 
component sensor services, and makes its values defined in 
terms of component values available via the 

SensorDataAccessor interface. Thus, it performs processing 
on the collected data and returns the calibrated composite 
result to service requestors. In the second role, as a child, 
CSP can be a part of another CSP and in that case provides 
the calibrated result to its parent CSP.  

CSP’s ability to contain other CSPs along with ESPs 
makes logical sensor networking possible. Thus, the 
semantics of network management in SenSORCER is 
reduced to the management of a single CSP. The user of the 
system can add or remove sensor nodes from the network, by 
interacting and issuing requests to a single CSP. CSP 
management is sensor independent; one can change 
contained provider's implementation, and can use different 
sensors, without potentially affecting the CSP provider.  

Sensor Computation provides capabilities of specifying 
required computing power to CSPs. It performs the user 
specified computation on to sensor data. The user can 
provide expressions, treating services as the variables inside 
the CSP expression. CSP replaces service variables with the 
actual values from component sensor services and then 
computes the expression as complex as required, which is 
then sent back to the requestor. 

The user can interact with SenSORCER through a user 
agent attached to the Sensorcer Façade provider. When user 

Figure 1.  SenSORCER architecture - UML component diagram 
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wants to make use of any management functionality of the 
SenSORCER system, he opens zero-install user interface 
called a Sensor Browser in a Jini service browser, for 
example Inca X [18], as illustrated in Fig. 2. The design of 
the browser follows the MVC pattern [21]. Its model 
contains the data of the sensor network configuration, views 
display the data in appropriate format, and controller 
providers mapping between the network model and browser 
views. 

The Sensorcer Façade is the single entry point of the 
SenSORCER system. It provides a uniform access to the 
user through the Sensor Browser. The Façade uses a Sensor 
Network Manager to provide the CSP network management 
functionality. These network management functionality is 
carried out using Service Accessor and Sensor Service 
Provisioner components.  

A Service Accessor finds service providers using the Jini 
Lookup Services. First, it discovers lookup services and then 
finds matching services specified by signatures in exertions. 
A Sensor Service Provisioner provides for provisioning of 
sensor services based on quality of service specified by 
requestors according to the Rio framework. Thus, dynamic 
network formation of sensors in SenSORCER dynamically 
allocates a CSP to the capable cybernode (the Rio compute 
node) with operational specifications provided by the 
requestor.  

VI. IMPLEMENTATION 
The SenSORCER framework has been implemented 

using Java, SORCER, Jini, Rio, and Groovy and deployed in 
SORCER Lab, Texas Tech University [19]. For the 
experimental purpose we used temperature sensors built in 
into SUN’s Programmable Object Technology (SUN SPOT) 
device [10, 11]. Implementation also supports arithmetic 

expression evaluation, the sensor computation mechanism 
available for composite service providers. Fig. 2 illustrates 
the Inca X browser [18] displaying all currently available 
services in the sensor network. The notable are Jini 
infrastructure services (Lookup Discovery, Event Mailbox, 
and Lease Renewal services), Rio provisioning services (two 
Cybernodes and one Monitor - provisioning service). Four 
elementary sensor services are individually connected to four 
temperature sensors (Neem-Sensor, Jade-Sensor, Coral-
Sensor, and Diamond-Sensor). In addition, one composite 
sensor service (Composite-Service) and one façade service 
(SenSORCER Façade) is also visible. The view shown on 
the right side of service list in Fig. 2 is the sensor browser 
interface attached the façade service. In Fig. 2 also the subnet 
formation with composite service is shown. The steps to 
carry out experiment are as follow: 
1. As shown in Fig. 3, using composite service 

(Composite-Service), we formed a sensor subnet with 
three elementary sensor services (Neem-Sensor, Jade-
Sensor, and Diamond-Sensor). 

2. Associated a compute-expression to report average 
temperature of these three individual sensors (“(a + b + 
c)/3”).  

3. Provisioned a new composite service on to the network 
(New-Composite). 

4. Using provisioned service, we formed sensor network 
with one composite (subnet formed in step 1) and 
remaining elementary sensor service (Coral-Sensor).  

5. Associated expression with provisioned service to take 
average of two composed services from step 4 (“(a + 
b)/2”). 

Figure 2. SenSORCER services 
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6. As shown in Fig. 3, read Sensor Value from newly 
created composite service.  

Fig. 3 displays the snapshot after step 6. The provisioned 
sensor service (New-Composite) is also visible as the 
registered service with the lookup service. On “Sensor 
Value” section we can see the average temperature values of 
all the sensors available in the system. The temperature 
values read from the other sensor services are also listed. 
“Sensor Service Information” section displays the composed 
service in step 4 and associated expression in step 5. The 
variables that are used in the expression are created 
dynamically, as the services are added into the composite 
provider. For example, in Fig. 3, variable ‘a’ and ‘b’ are 
created dynamically, when the two services are added into 
the provisioned composite service. (‘a’ is created for 
Composite-Sensor service and ‘b’ is created for Coral-Sensor 
service). 

VII. SENSORCER BENEFITS 
From the architecture point of view one can easily make 

out that the sensor probe is the only sensor dependent 
component. Applications written for sensor data are 
independent of the sensor technology used. In addition, 
sensor services themselves make use of sensor probes, so 
they are only concerned with sensor probe’s interface, which 
does not dependent on a particular sensor technology, thus, 
achieving probe independent service providers. One can 
easily change the existing implementation and technologies 

of the sensors used and still keep up with rapid evolution of 
the sensor technology. 

One of the core challenges of sensor application design is 
balancing the resource usage of individual nodes with the 
global behavior of the desired network [15]. SenSORCER 
makes use of federated metacomputing environment, which 
offers dynamic federation of the services to complete 
complex and scalable tasks [9]. In addition, runtime network 
management makes the scalability and dynamic networking 
easier. There is no need to make any change to the physical 
network resources, as all we do is changing the logical 
network arrangements. The use of Rio provisioning allows 
for dynamic and failure resilient network creation on-the-fly. 
As the computing resources spread across the network and 
service providers can be associated with different compute 
resources, addition of new sensor services does not 
necessarily affect the performance of the system. The Rio 
framework allows for allocating the sensor service to the best 
compute resource (cybernode) from the available network 
resources at hand, alleviating the application design and 
development from usually required resource management. 

The sensor network administration has two aspects, one 
is hardware related which has to be taken care at the 
particular location and with the sensor device physically. The 
other is software configuration and network management. 
For latter, all the sensor service administration is available 
for the user via the provided Sensor Browser (see Fig. 2). 

Figure 3. Logical sensor networking 
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The Sensor Browser is a very lightweight and zero-install 
service UI [20]; it does not contain any heavy processing 
components. For the most part, the service UI just takes the 
input from the user and gives back result from the 
SenSORCER network. The associated compute hosts run the 
available sensor services; nevertheless, the Sensor Browser 
can run even on mobile devices.  

The user can collect the data from different sensor 
services directly or it can make use of composite provider, to 
make it go to the different providers. This service-to-service 
communication makes it possible to transfer data from node 
to node without any user intervention. If user wants to get 
data from different services and perform some computation, 
he can create a composite service provider to do this task.  

This way, we can manage the data generated from 
different services, allowing various services to take part in 
both communication and computation processes. 

The plug-and-play feature is very useful in sensor 
networks, as after the initial installation and configuration of 
the system, the addition and removal of sensors is more 
frequent. Plug-and-play of discoverable services with Jini 
lookup services allows any sensor service to appear and go 
away in the network dynamically. Since SenSORCER is 
based on the Jini infrastructure, the sensor services can come 
and go. If a service goes down the node is terminated and 
when it is up the node is immediately available in the 
network. 

VIII. CONCLUSIONS 
This paper highlights the issues involved in designing 

and implementing federated sensor systems and 
demonstrates the feasibility of such deployment for 
metacomputing sensor environments. The presented 
SenSORCER architecture shares the attributes of P2P 
systems, dynamic service object oriented programming, and 
inheriting the security provided by Java/Jini security services 
along with exertion-oriented programming. It is modularized 
into a collection of sensor providers (ESPs and CSPs) with 
multiple remote SenSORCER Façades. Façades supply with 
a uniform access points via their smart proxies available 
dynamically to service requestors. A façade smart proxy 
encapsulates inner proxies to federating providers accessed 
directly (P2P) by requestors. The experimental sensor 
services have been successfully deployed as SORCER 
services and we are planning for large-scale air vehicles 
distributed applications. The SenSORCER network scales 
very well with the Rio provisioning support to satisfy the 
needs of current users and service requestors. The system 
handles very well several types of network and computer 
outages by utilizing the Jini infrastructure and dynamic 
exertion-oriented programming model. It provides a zero-
install sensor browser (service UI) attached to the 
SenSORCER Façade that provides sensor network 
management facility.  
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