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Abstract—Federated computing environments offer requestors 
the  ability  to  dynamically  invoke  services  offered  by 
collaborating providers in the virtual service network. Without 
an efficient resource management, however, the assignment of 
providers  to  customer’s  requests  cannot  be  optimized  and 
cannot offer high reliability without relevant SLA guarantees. 
We propose  a  new SLA-based SERViceable  Metacomputing 
Environment (SERVME) capable of matching providers based 
on QoS requirements and performing autonomic provisioning 
and deprovisioning of services according to dynamic requestor 
needs.  This  paper  presents  the  new  autonomic  SLA 
management  and  the  object-oriented  SLA  model  for  large-
scale  service-oriented  systems.  An  initial  reference 
implementation in the SORCER environment is also described.

Keywords-Service  Oriented  Computing;  Metacomputing;  
Resource  Management;  Quality  of  Service;  Service  Level  
Agreements

I.  INTRODUCTION

Many  research  activities  worldwide  are  focused  on 
developing smart, self-manageable systems that will allow 
applications  to  run  smoothly and reliably in  a  distributed 
environment. IBM calls this Autonomic Computing [1]. The 
realization of this concept would enable the move towards 
Utility  Computing  –  the  long  awaited  vision  where 
computing power would be available as a utility just  like 
water or electricity is delivered to our homes today. One of 
the challenges in addressing this concept lies in the problem 
of guaranteeing a certain level of  Quality of Service (QoS) 
to the customer for which he/she would be willing to pay.

In this paper we address related issues by proposing the 
SERViceable  Metacomputing  Environment  (SERVME) 
which is based on the SORCER [2] environment extended 
by  adding  a  QoS  Management  Framework.  This  paper 
presents  an  architecture  overview  of  the  federated  P2P 
environment  and  focuses  on  the  aspects  of  autonomic 
provisioning of required services within the environment.

SORCER  provides  a  way  of  creating  service-oriented 
programs  and  executing  them  in  a  metacomputing 
environment. The service-oriented paradigm is a distributed 
computing concept wherein objects across the network play 
their  predefined  roles  as  service  providers.  Service 

requestors can access these providers by passing messages 
called  service  exertions.  An  exertion  defines  how  the 
service providers federate among themselves to supply the 
requestor  with  a  required  service  collaboration.  All  these 
services form an instruction-set of a virtual metacomputer 
that looks to the end-user as a single computer.

The  proposed  QoS  management  framework  has  been 
deployed  and  validated  in  the  SORCER  environment. 
However, due to its generic nature we believe that both the 
Service Level Agreements (SLA) object model as well as the 
underlying  communication  model  defined  in  terms  of 
communication  interfaces  could  be  adopted  for  other 
service-oriented architectures.

The  rest  of  the  paper  is  divided  into  the  following 
sections: Section II describes the related work, Section III 
gives introduction to SORCER, Section IV describes service 
messaging with exertions and QoS requirements, Section V 
presents the SLA object model, Section VI elaborates on the 
architecture  of  the  SERVME framework  and  presents  its 
autonomic provisioning features,  Section VII  presents  the 
deployment  of the framework and Section VIII  concludes 
the paper.

II. RELATED WORK

Much research has been done in the area of Service Level  
Agreements (SLA) management of services.

At first in  Grid Computing the  Globus Architecture for  
Reservation and Allocation (GARA) [3] addressed the SLA 
management issues of services. Further work challenged the 
problem of complex, multi-level SLA management and led 
to  the  development  of  a  generic  Service  Negotiation and 
Acquisition Protocol (SNAP) [4].

As  grid  technology  started  to  move  from  traditional 
network  batch  queuing  towards  the  application  of  Web 
Services (WS) the research of the grid community, as well 
as others, concentrated on integrating SLA management into 
the standard stack of WS. The grid community developed 
the Open Grid Service Architecture (OGSA) [5] that stated 
the need to address SLA management.

As a means to allow dynamic SLA negotiation, efforts 
have been made to standardize the SLA specification. Some 
general  architectural  approaches  can  be  observed  that  are 

2009 International Conference on Parallel Processing Workshops



usually  taken  to  define  an  SLA  specification.  The  most 
common  approach  uses  mathematical  formalization  or 
creates a specific language to define QoS and SLAs.

One of the examples is  [6] where the authors propose a 
specification  language,  similar  to  C,  called  Contract 
Definition Language (CDL), another one, presented in [7] is 
an  object  oriented  language:  QoS  Modelling  Language 
(QML). A slightly different approach is taken by C. Yang et 
al  [8] who  suggest  to  specify  QoS  requirements  in  the 
natural  language  and  then  convert  them to  UML or  high 
level  programming  languages.  A  general  overview  and  a 
comparison  of  many  SLA  specification  languages  is 
provided in [9] by J. Jin and K. Nahrstedt. 

Another group of specifications that mostly concentrates 
on defining SLAs for WS create an XML schema and use 
XML as the representation of QoS parameters  and SLAs. 
Most notable of them are the Web Service Level Agreement 
framework  (WSLA)  [10] and  the  WS-Agreement 
specification  [11]. The latter,  however,  has a very limited 
ability to specify conditional  expressions and alternatives. 
Therefore extensions have been proposed in the CoreGRID 
project [12] for example. Recently the developments within 
the NextGRID project introduce new QoS parameters such 
as  i.a.  Robustness and Resilience [20].  Apart  from agreed 
standards  such  as  the  above  there  are  also  a  number  of 
custom solutions such as the  WS-QoS framework [13] that 
in turn proposes to specify QoS parameters  and provision 
prices  in  the  WS  protocol  stack  within  the  WSDL 
specification. The most recent tendency is to use ontologies 
to specify SLAs [14].

All  the  above  mentioned  solutions  propose  a  kind  of 
mathematical  formalism or specific  language  semantics to 
describe QoS parameters and SLAs. The presented approach 
follows a different path and focuses on defining an object-
oriented specification in terms of communication interfaces 
as  abstract  data  types.  Although  the  reference 
implementation is  realized  in  Java  the  APIs  are  modeled 
generally to allow it  to be utilized in any modern object-
oriented language. The SLA specification provides an open 
framework that can be extended and implemented to meet 
the  requirements  of  custom environments.  We claim that 
this approach offers greater flexibility than i.e. using XML 
while  preserving  a  richer  and  simpler  degree  of 
expressiveness and allows a more direct and more efficient 
implementation than i.e. using ontologies by eliminating the 
laborious intermediary conversion steps.

The  SERVME  framework  concentrates  on  federated, 
distributed environments. Although, there have been several 
projects that claim to address SLA management in federated 
environments  [6],  [15],  however,  none  of  them refers  to 
federation of services specified and created on-the-fly such 
as the one which exists in the exertion-oriented architecture  
utilized by SERVME. Most mentioned above projects use 
the  term  federation to  underline  the  organizational 
challenges that arise due to the fact that a federated system 

is composed of usually static services that may belong to 
different administrative entities.

Most  of  the  described  SLA  management  research 
focuses on traditional grids or web/grid service architectures 
and  little  attention  is  drawn  to  federated  metacomputing 
environments.  The  dynamic  aspects  as  well  as  the  P2P 
characteristics of those environments pose new challenges 
for  resource  management  and  this  paper  tries  to  address 
some of them.

In federated service-oriented environments services can 
be divided into two categories:  1) infrastructure services - 
those  that  provide  basic  functionality  of  the  environment 
(Lookup Service, Transaction Manager, filesystem services, 
authentication and authorization services, QoS management 
services  etc.)  and  2)  application  services  that  are  custom 
built  for  every  application  of  the  platform.  (An  example 
called QosCaller is mentioned in Section VII. This service 
was  used  during  the  validation  of  SERVME to  invoke a 
legacy  application  used  for  Magnetic  Resonance  Image 
(MRI)  processing.)  Resource  management  for  the  first 
group can be handled using provisioning frameworks such 
as the Rio project [16] [17], however,  in this research we 
propose  a  new  dynamic,  autonomic  provisioning  of  the 
application  services  to  allow  the  metacomputing 
environment to find existing services that satisfy requested 
QoS requirements or provision services with the requested 
QoS automatically on request and deprovision them when 
they are not used anymore. 

The  presented  solution  aims  at  delivering  a  complete, 
extensible framework, however, this  paper provides only a 
general  overview and  focuses  mainly  on  the  SLA  object 
model and autonomic management at this time.

III. SORCER
SORCER [2] (Service Oriented Computing EnviRonment) 
is  a  federated  service-to-service  (S2S)  metacomputing 
environment that treats service providers as network objects 
with well-defined semantics of a federated service object-
oriented architecture.  It  is based on Jini [17] semantics of 
services in the network and Jini programming model with 
explicit  leases,  distributed  events,  transactions,  and 
discovery/join  protocols.  While  Jini  focuses  on  service 
management in a networked environment, SORCER focuses 
on  exertion-oriented  programming  and  the  execution 
environment  for  exertions  [2],  SORCER  uses  Jini 
discovery/join protocols to implement its  exertion-oriented  
architecture (EOA) using federated method invocation [18]
[19], but hides all the low-level programming details of the 
Jini programming model.

In  EOA,  a  service  provider  is  an  object  that  accepts 
remote  messages  from  service  requestors  to  execute  a 
collaboration. These messages are called service exertions 
and  describe service  (collaboration)  data,  operations  and 
collaboration's control strategy. An exertion task (or simply 
a  task)  is  an  elementary  service  request,  a  kind  of  an 
elementary instruction executed by a single service provider 
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or  a  small-scale  federation  for  the  same  service  data.  A 
composite exertion called an exertion job (or simply a  job) 
is  defined hierarchically in terms of tasks and other  jobs, 
and thus  isa kind of a  federated  procedure  executed by a 
large-scale  federation.  The  executing  exertion  is 
dynamically bound to  all  required  and currently available 
service  providers  on  the  network.  This  collection  of 
providers  identified  in  runtime  is  called  the  exertion 
federation. The federation provides the implementation for 
the  collaboration  as  specified  by  its  exertion.  When  the 
federation  is  formed,  each  exertion’s  operation  has  its 
corresponding  method  (code)  available  on  the  network. 
Thus, the network  exerts the collaboration with the help of 
the dynamically formed service federation. In other words, 
we send the request  onto the network implicitly,  not  to a 
particular service provider explicitly. 

The overlay network of service providers is called the 
service grid and an exertion federation is in fact a  virtual  
metacomputer. The metainstruction set of the metacomputer 
consists of all operations offered by all service providers in 
the  grid.  Thus,  an  exertion-oriented (EO)  program  is 
composed of metainstructions with its own control strategy 
and a  service  context representing  the  metaprogram data. 
The  service  context  describes  the  collaboration  data  that 
tasks  and  jobs  work  on.  Each  service  provider  offers 
services to other service peers on the object-oriented overlay 
network.  These  services  are  exposed  indirectly by 
operations  in  well-known  public  remote  interfaces  and 
considered  to  be  elementary  (tasks)  or  compound  (jobs) 
activities  in EOA. Indirectly  means here,  that  you  cannot 
invoke  any  operation  defined  in  provider’s  interface 
directly. These operations can be specified in the requestor’s 
exertion only, and the exertion is passed by itself on to the 
relevant  service  provider  via  the  top-level  Servicer 
interface  implemented  by  all  service  providers  called 
servicers—service peers. Thus all service providers in EOA 
implement the 
service(Exertion, Transaction) : Exertion 
operation  of  the  Servicer interface.  When the servicer 
accepts its received exertion, then the exertion’s operations 
can  be  invoked  by  the  servicer  itself,  if  the  requestor  is 
authorized  to  do  so.  Servicers  do  not  have  mutual 
associations prior to the execution of an exertion; they come 
together at runtime (federate) for a collaboration as defined 
by its exertion. In EOA requestors do not have to lookup for 
any network provider  at  all,  they can submit  an exertion, 
onto the network by calling 
Exertion.exert(Transaction : Exertion 
on the exertion. The exert operation will create a required 
federation that will run the collaboration as specified in the 
EO program and return the resulting exertion back to the 
exerting  requestor.  Since  an  exertion  encapsulates 
everything  needed  (data,  operations,  and control  strategy) 
for  the  collaboration,  all  results  of  the  execution  can  be 
found in the returned exertion’s service contexts.

Domain  specific  servicers  within  the  federation,  or  task 
peers  (taskers),  execute  task  exertions.  Rendezvous peers 
(jobbers  and  spacers)  coordinate  the  execution  of  job 
exertions.  Providers  of  the  Tasker,  Jobber,  and 
Spacer type  are  three  of  SORCER  main  infrastructure 
servicers.

IV. SERVICE MESSAGING AND EXERTIONS

In object-oriented terminology, a message is the single 
means of passing control to an object. If the object responds 
to the message, it has an operation and its implementation 
(method)  for  that  message.  Because  object  data  is 
encapsulated and not directly accessible,  a message is the 
only way to  send  data  from one  object  to  another.  Each 
message  specifies  the  name  (identifier)  of  the  receiving 
object,  the  name  of  operation  to  be  invoked,  and  its 
parameters.  In  the  unreliable  network  of  objects,  the 
receiving object might not be present or can go away at any 
time.  Thus,  we  should  postpone  receiving  object 
identification as late as possible. Grouping related messages 
per one request for the same data set makes a lot of sense 
due  to  network  invocation  latency and common errors  in 
handling.  These  observations  lead  us  to  service-oriented 
messages called exertions. 

To  further  clarify  what  an  exertion  is,  an  exertion 
consists mainly of three parts:  a set  of service signatures, 
which is a description of operations in  a  collaboration, the 
associated  service  context  upon  which  to  execute  the 
exertion,  and  the  control  strategy  (default  provided)  that 
defines how signatures are applied in the collaboration. A 
service signature specifies at least the provider’s interface 
that the service requestor would like to use and a selected 
operation to run within that interface. There are four types 
of  signatures  that  can  be  used  for  an  exertion: 
PREPROCESS,  PROCESS, POSTPROCESS,  and  APPEND. 
An exertion must have one and only one PROCESS signature 
that specifies what the exertion should do and who works on 
it. An exertion can optionally have multiple PREPROCESS, 
POSTPROCESS,  and  APPEND  signatures  that  are  primarily 
used for formatting the data within the associated service 
context.  A service  context  consists  of  several  data  nodes 
used for either input, output, or both. A task may work with 
only a single service context, while a job may work with 
multiple service contexts since it can contain multiple tasks. 
The programmer can define a control strategy as needed for 
the underlying exertion by choosing relevant exertion types 
and configuring attributes of service signatures and service 
contexts accordingly [19].

In  SERVME  a  signature  includes  a  QoS  Context 
(defined in Section V) that encapsulates all QoS/SLA data. 
Different  types  of  control  exertions  (IfExertion, 
ForExertion,  and WhileExertion)  can  be  used  to 
define  flow  of  control  that  can  also  be  configured 
additionally with adequate signature attributes [18]. 
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An  exertion  can  be  invoked  by  calling  exertion’s 
exert operation: 
Exertion.exert(Transaction) : Exertion, 
where  a  parameter  of  the Transaction type  is  required 
when  the  transactional  semantics  is  needed  for  all 
participating  nested  exertions  within  the  parent  one, 
otherwise can be null. Thus, EO programming allows us to 
submit  an  exertion onto  the  network  and  to  perform 
executions  of  exertion’s  signatures  on  various  service 
providers  indirectly,  but where does the service-to-service 
communication  come  into  play?  How  do  these  services 
communicate with one another if they are all different? Top-
level  communication  between  services,  or  the  sending  of 
service requests (exertions), is done through the use of the 
generic Servicer interface and the operation service that 
all  SORCER  services  are  required  to provide—
Servicer.service(Exertion, Transaction). This 
top-level service operation takes an exertion as an argument 
and gives back an exertion as the return value.

V. SLA OBJECT MODEL

SERVME  builds  on  the  SORCER  environment  by 
extending its interfaces and adding new service providers. It 
is a generic resource management framework based on the 
Commonality-Variability  Analysis model  in  terms  of 

common  data  structures  and  extensible  communication 
interfaces hiding all implementation details.

One of the key features of the framework is the proposed 
SLA specification  that  has  been  specifically  developed  to 
meet the requirements of metacomputing environments. It is 
defined in object-oriented terms and thus forms an object 
model. The class diagram in  Fig. 1  shows the elements of 
the  SLA  object  model.  For  better  readability  all  setter 
methods and most attributes are omitted and thus only getter 
methods are presented.

The  QosContext interface  defines  the  data  structure 
that incorporates  all  requirements  submitted  by  the 
requestor in the exertion's signature. It includes:
• Functional Requirements—a service type  identifying a 

requested  provider  (the  classname  of  the  required 
interface:  sorcer.provider.QosCaller,  for 
example),  operation  to  be  executed 
(getMethodName()), and related provider's attributes,

• System Requirements—fixed properties that describe the 
requested provider’s hardware and software environment 
(i.e.  CPU architecture,  OS name and version, required 
libraries etc.).  Each requirement is defined in terms of 
the  SystemComponent class based on the class by the 
same name in the Rio project [16] that defines the basic 
properties and may be customized for every component.

Figure 1. SLA Object Model
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• Organizational  Requirements—properties  of  the 
submitting  entity  (getProject() and 
getOrganization()),  requested  priority  range, 
requested execution time frame and estimated duration 
of  the  execution.  Those  parameters  are  used  by  the 
SlaPrioritizer service (described in section VI) to 
manage  and  assign  resources  to  projects  or 
organizational entities in large computing environments.

• Metrics—dynamic,  user  defined,  compound parameters 
which  are  calculated  on  the  basis  of  System-  or 
Organizational  Requirements.  Each  metric  must 
implement the class Metric that defines its name, set of 
variables and the method evaluate() that performs on-
the-fly evaluation based on input variables. As variables, 
names of  SystemComponents and their attributes may 
be  passed  and  then  they  will  be  substituted  during 
evaluation with their  current  values.  Current  reference 
implementation  includes  the  Groovy  Metric,  for 
example,  that  allows to  specify custom expressions in 
the Groovy language.

• Service  Cost—(i.e.  Maximum  cost  of  the  execution). 
SERVME defines the ServiceCost class that includes 
the  getValue() method.  This  way  customized 
implementations  of  complex  cost  specification 
algorithms are supported.

• SLA  Parameter  Requests—the  demanded  ranges  of 
values  or  fixed values  of  QoS parameters,  Metrics  or 
Organizational and System Requirements. Each of them 
is  defined  using  an  implementation  of  the 
SlaParameter interface.

The  QosContext interface  is  implemented  by  the 
QosServiceContext class.

The  SlaParameter interface  is  used  both  to  specify 
requests  as  well  as  offers,  each  regarding  one  specific 
metric-,  organizational-  or  system  requirement. 
SlaParameter  defines  the  requested  value  (in  case  it 
should be fixed) or low and high thresholds. It also specifies 
the SlaPolicyHandler class that may be added to define 
actions  (notifications,  penalties  etc.)  invoked  during 
execution  when  the  contracted  parameter  values  are 
breached.

SlaParameter specifies also the 
SlaParameterState that can have one of the enumerated 
values: PARAM_REQUEST, PARAM_UPDATED, 
PARAM_OFFER, PARAM_ACCEPTED, PARAM_GRANTED. 
This attribute is used primarily during the negotiation phase.

Another  critical  interface  is  the  SlaContext  that  is 
implemented by the  SlaServiceContext class and used 
by the service provider  to offer  or guarantee the required 
QosContext. SlaContext consists of:
• SlaParameters—set  of  objects  that  implement  the 
SlaParameter interface and define the SLA Parameter 
ranges or values offered or guaranteed by the provider.

• QosContext—the related requestor’s QoS requirements 
satisfied  by  the  SlaParameters and  specified  as 
QosContext type.

• Offered price of the proposed SLA (getCost())
• SlaState—property  that  defines  the  state  of  the 

negotiation process (SLA_REQUEST,SLA_UPDATED, 
SLA_OFFER,SLA_ACCEPTED, SLA_GRANTED).

• Servicer—(getProvider()) - the proxy of the 
service provider that guarantees the SLA.

VI. ARCHITECTURE OF SERVME

A. SERVME Components
Along  with  the  above  SLA  object  model  SERVME 

defines basic components and communication interfaces as 
depicted in the UML component diagram illustrated in Fig. 
2.  We  distinguish  two  forms  of  autonomic  provisioning: 
monitored  and  on-demand.  In  monitored  provisioning  the 
provisioner  (Rio  Provisioner  [16])  deploys  a  requested 
collection of providers, then monitors them for presence and 
in the case of any failure in the collection, the provisioner 
makes sure that the required number of providers is always 
on  the  network  as  defined  by a  provisioner's  deployment 
descriptor.  On-demand  provisioning  refers  to  a  type  of 
provisioning  (On-demand  Provisioner)  where  the  actual 
provider is presented to the requestor, once a subscription to 
the  requested  service  is  successfully  processed.  In  both 
cases,  if  services  become  unavailable,  or  fail  to  meet 
processing  requirements,  the  recovery  of  those  service 
providers to available compute resources is enabled by Rio 
provisioning  mechanisms.  The  basic  components  are 
defined as follows: 
• QosProviderAccessor is  a  component  used  by  the 

service  requestor  (customer)  that  is  responsible  for 
processing the exertion request containing QosContext 
in  its  signature.  If  the  exertion  type  is  Task then 
QosCatalog is  used, otherwise a  relevant  rendezvous 
peer: Jobber, Spacer is used.

• QosCatalog is an independent service that acts as an 
extended Lookup Service (QoS LUS). The QosCatalog 
uses the functional requirements as well as related non-
functional QoS requirements to find a service provider 
from currently available in the network. If  a matching 
provider does not exist, the QosCatalog may provision 
the needed one by calling the On-demandProvisioner 
(described below).

• SlaDispatcher is a component built into each service 
provider.  It  performs  two  roles.  On  one  hand,  it  is 
responsible  for  retrieving  the  actual  QoS  parameter 
values from the operating system in which it is running, 
and on the other hand, it exposes the interface used by 
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QosCatalog to  negotiate,  sign  and  manage  the  SLA 
with its provider.

• SlaPrioritizer is  a  component  that  allows 
controlling  the  prioritization  of  the  execution  of 
exertions  according  to  the  organizational  requirements 
of  SlaContext. It  allows  to  specify  a  resource 
allocation strategy either by simply allowing/disallowing 
certain projects or organizational entities to execute on 
certain resources or by using a “managed” free market 
economy  approach  and  manipulating  execution  price 
parameters depending on organizational requirements.

• QosMonitor (UI) provides  an  embedded  GUI  that 
allows the monitoring of provider’s QoS parameters at 
runtime.

• SlaMonitor is  an  independent  service  that  acts  as  a 
registry  for  negotiated  SLA contracts  and exposes  the 
user interface (UI)  for administrators to allow them to 
monitor, update or cancel active SLAs.

• On-demandProvisioner is a  SERVME provider that 
enables  on-demand  provisioning  of  services  in 
cooperation  with  the  Rio  Provisioner  [16][17].  The 
QosCatalog uses it when no matching service provider 
can be found that meets requestor QoS requirements.
The SERVME framework is integrated directly into the 

federated  metacomputing  environment.  As  described  in 
Section IV, the service requestor submits the exertion with 
QoS  requirements  (QosContext)  into  the  network  by 
invoking Exertion.exert operation. If the exertion is of 

Task type, then QosProviderAccessor via QosCalatog 
finds  in  runtime  a  matching  service  provider  with  a 
corresponding  SLA.  If  the  SLA can  be  directly  provided 
then  the  contracting  provider  approached  by  the 
QosCalatog returns  it  in  the  form  of  SlaContext, 
otherwise  a  negotiation  can  take  place  for  the  agreeable 
SlaContext between  the  requestor  and  provider.  The 
provider's  SlaDispatcher drives  this  negotiation  in 
cooperation  with  SlaPrioritizer and  the  requestor.  If 
the  task  contains  multiple  signatures  then  the  provider  is 
responsible for contracting SLAs for all other signatures of 
the  task  before  the  SLA  for  its  PROCESS signature  is 
guaranteed.

However, if the submitted exertion is of Job type, then 
QosProviderAccessor via QosCalatog finds in runtime 
a matching rendezvous provider with a guaranteed SLA. 

Before the guaranteed SLA is returned, the rendezvous 
provider  recursively  acquires  SLAs  for  all  component 
exertions as described above depending on the type (Task 
or Job) of component exertion.

B. SLA Lifecycle
The  negotiation  process  is  shortly  described  in  this 

subsection. The details along with an activity diagram will 
be presented in future papers.

1) Preparing for the negotiation 
As  described  above  upon  the  execution  of 

Exertion.exert(), QosCatalog is called either by the 
QosProviderAccessor or  by  one  of  the  rendezvous 

Figure 2. SERVME Components Diagram
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providers. The QosCatalog acts as a QoS broker between 
the requestor  and service providers.  At first  QosCatalog 
analyzes the QoS requirements passed in the  QosContext 
and extracts the system requirements as well as functional 
requirements of the requested provider type.  Based on the 
functional  requirements  QosCatalog performs a standard 
lookup  and  retrieves  a  list  of  all  providers  offering  the 
requested interface and method. Next, QosCatalog queries 
via the  SlaManagement interface the  SlaDispatcher of 
each of those providers to retrieve the current  QoS that it 
can offer. The supplied data allows it to select providers that 
match  the  system requirements.  Those  providers  are  then 
called via the same  SlaManagement interface to start the 
SLA negotiation process.

2) Negotiation
The exact details of the negotiation rules and the algorithms 
used by both the requestor and the provider are not of the 
main focus of this research. SERVME defines the common 
negotiation  protocol  and  the  negotiation  business  logic  is 
customized  by each  provider  according  to  specific  needs. 
SERVME however,  specifies  the  common data  structures 
defined  in  Section  V  and  communication  interfaces 
presented in Fig. 2.

When  the  QosCatalog invokes  the  negotiateSla 
operation  of  the  SlaManagement interface  then  the 
provider  creates  the  SlaContext object  and includes  the 
QosContext that  contains  the original  QoS requirements 
passed as a parameter. The provider sets the  SlaState to 
SLA_OFFER or to  SLA_UPDATED depending whether it can 
guarantee the requested QoS requirements. At this time the 
provider allocates the requested resources.

SERVME  introduces  a  SLA  leasing  mechanism  to 
address  the problem of  unnecessary  resource  reservations 
that may occur if the requestor discontinues the negotiation 
process without notifying the provider – in case of a system 
failure, for example. 

3) On-demand Provisioning
If  any of the providers queried by  QosCatalog responds 
with an SLA_OFFER, the process continues on to the signing 
of  the  contract,  otherwise  if  only  SLA_UPDATEs  are 
returned,  the  QosCatalog tries to deploy a new provider 
with  the  required  QoS  parameters  by  calling  the 
OnDemandProvisioner.

OnDemandProvisioner constructs  on-the-fly  an 
OperationalString required  by  Rio  and  calls  the 
ProvisionMonitor component of Rio  [16] to deploy the 
required  providers.  Then  QosCatalog invokes  the  same 
negotiation sequence to sign the SLA with one of them.

If  provisioning still  does not supply a relevant service 
provider a failure exception containing the  SlaContext is 
thrown by the  QosCatalog and returned to the requestor. 
The  requestor  may  implement  negotiation  handlers  that 
process  such  an  exception  and  continues  the  negotiation 
with lowered requirement’s threshold values.

4) SLA Signing
Digital signing of an offered SLA is performed in two steps. 
First the QosCatalog chooses the best offer (i.e. based on 
price or other criteria) and then passes the offered SLA, its 
lease and the chosen provider's proxy to the requestor. The 
leases  from other  providers  are  aborted.  The  requestor  is 
now responsible for renewing the lease and finalizing the 
acquiring of the SLA by calling  the signSla operation on 
the provider. To guarantee the non-repudiation of contracts 
or offers both parties use the SORCER security framework 
based on PKI infrastructure. 

5) SLA Monitoring and Management
At this point  the signed SLA is also passed on to  the 

SlaMonitor via notify in its EventListener interface. 
The  received  SLA  is  then  registered  and  persisted.  The 
SlaMonitor allows  the  administrator  to  manage  and 
monitor SLAs that have been negotiated and signed. 

6) Deprovisioning services
Thanks  to  the  leasing  mechanism the provider  knows 

when its resources are not needed anymore. When the lease 
expires the provider notifies the  AutonomicProvisioner 
and this service undeploys the unused provider by calling 
the  Rio  ProvisionMonitor.  The  provider  cannot  just 
simply  destroy  itself  since  in  that  case  Rio's  failover 
mechanism would immediately deploy another instance of 
the provider.

VII. DEPLOYMENT

SERVME  has  been  deployed  and  successfully  tested 
within  the  SORCER  environment.  The  reference 
implementation was written in Java 1.6 and requires Jini 2.1 
and  Rio  4.0-M1.  The  Rio  runtime  has  been  used  for 
provisioning as well as a source of QoS parameters and also 
as intermediary between the framework’s components and 
the  underlying  service  provider's  JMX Server.  The  Rio’s 
Service UI has been integrated into the SERVME service 
provider’s UI and so, it allows the user to view and monitor 
QoS parameters at runtime.

The framework was validated in a real-world example 
taken from neuroscience. SERVME was used to invoke and 
control  multiple  parallel  and sequential  computations  that 
dealt  with  the  processing  of  MRIs  of  human  brains.  Six 
heterogeneous  hosts  (different  hardware  and  OS)  where 
used  to  perform several  simultaneous computations.  Each 
provider, called  QosCaller collected historical  execution 
times  for  similar  computations  and  used  this  data  to 
calculate the estimated time and cost of execution. Cost was 
calculated  as  inversely  proportional  to  time  of  execution 
extended with some parameters that altogether caused that 
running the computation on faster hardware was much more 
expensive than on lower end hosts. 

The  simulations  where  run  several  times  and  have 
shown  that  with  SERVME it  is  possible  to  optimize  the 
execution of complex computations for lowest price or best 
performance.  The  overhead  time  resulting  from  the 
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communication  needed  to  select  the  appropriate  provider, 
perform SLA negotiation,  and sign  the SLA contract  has 
been measured in this environment at around 1-1.5 seconds 
and as such is negligible in comparison to the computations 
run, that took minimally 3-4 minutes each.

Detailed  validation  results  along  with  a  complete 
statistical analysis will be published in a forthcoming paper 
on performance analysis.

VIII. CONCLUSIONS

The new Autonomic SLA Management architecture for 
federated, metacomputing environments is presented in this 
paper. SERVME introduces the new QoS/SLA object model 
defined  by  the  two  generic  interfaces:  QosContext and 
related  SlaContext along  with  supporting  service 
providers:  QosCatalog,  SlaDispatcher,  SlaMonitor, 
SlaPrioritizer, and On-demandProvisioner. To the 
best of our knowledge this is the first attempt to define a 
framework capable of autonomic service provisioning  for 
exertion-oriented programming. 

The  presented  framework  addresses  the  challenges  of 
spontaneous federations in SORCER and allows for better 
resource allocation (best performance or lowest cost). Also, 
SERVME provides  for  better  hardware  utilization  due  to 
Rio  monitored  provisioning  and  SORCER  on-demand 
provisioning.  The  presented  architecture  scales  very  well 
with  on-demand  provisioning  that  reduces  the  number  of 
compute  resources  to  those  presently  required  for 
collaborations  defined  by  corresponding  exertions.  When 
diverse  and  specialized  hardware  is  used,  SERVME 
provides  means  to  manage  the  prioritization  of  tasks 
according to the organization’s strategy that defines "who is 
computing what and where".

Two zero-install  and friendly user  graphical  interfaces 
attached  to  SLA  Monitor  and  SORCER  Servicer  are 
available for administration purposes. 

The  SERVME  providers  are  SORCER  Servicers  so 
additional  providers  can  be  dynamically  provisioned  if 
needed  autonomically.  Finally,  the framework  enables  the 
accounting  of  resource  utilization  based  on  dynamic  cost 
metrics and thus it contributes towards the realization of the 
utility computing concept.
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