
Group-based Security in a Federated File System
Max Berger

Texas Tech University
max@berger.name

Michael Sobolewski
Texas Tech University

sobol@cs.ttu.edu

Abstract— The SILENUS federated file system was developed
by the SORCER research group at Texas Tech University. The
distributed file system with its dynamic nature does not require
any configuration by the end users and system administrators.

Managing security in a metacomputing system is a new
challenge. It must be ensured that every user has a valid
authentication and authorization to view, modify, and create
files in the system spread across many heterogeneous computers
that to individual requestor, it looks and acts like a single
computer. User management is a must be on a metacomputing
system and scale well. Existing user credential databases must
be incorporated as secure data services if present.

In this paper a new scalable authentication model for federated
file systems is described. In this model users authenticate to an
authentication service for their identity and a group manager
service for their collaborative groups membership. The group
manager service provides an authorization token that can be
used to invoke service-oriented functionality of the federated file
system. The group manager service uses existing user credential
databases as its back-end. There may be any number of group
manager services on the network with different user administra-
tion domains to provide desirable scalability. Multiple replicated
group manager services for the same user base can provide for
increased reliability. A scaled-down replica called nomadic group
manager service provides support for disconnected operations.
It contains the necessary credentials for a single user to use the
system while being disconnected from the main network.

I. INTRODUCTION

Under the sponsorship of the National Institute for Stan-
dards and Technology (NIST) the Federated Intelligent Prod-
uct Environment (FIPER) ([1], [2], [3]) was developed (1999-
2003) as one of the first service-to-service (S2S) grid comput-
ing environments. The Service-Oriented Computing Environ-
ment (SORCER) ([4], [5]) builds on the top of FIPER to in-
troduce a federated metacomputing environment with all basic
services necessary to support service-oriented programming. It
provides an integrated solution for metacomputing systems.

Building on the OO paradigm is the service-object oriented
(SOO) paradigm, in which the objects are distributed, or more
precisely they are remote (network) objects and play some
predefined roles. A service provider is an object that accepts
remote messages, called exertions, from service requestors to
execute an elementary item of work (statement) – a service
task, or a composite item of work (procedure) – a service job.

Any exertion becomes a SOO program that is dynamically
bound to all relevant and currently available service providers
on the network. This collection of providers dynamically
participating in this federated remote invocation is called an
exertion federation. This federation is also called a virtual
metacomputer as federating services are located on multiple

physical compute nodes held together by a SOO infrastructure
so that, to the individual requestor, it looks and acts like a
single computer.

The SORCER environment provides the means to create
interactive SOO programs and execute them without writing a
line of source code. Service jobs and tasks can be created using
interactive user interfaces downloaded directly from service
providers. Using these interfaces the user can execute and
monitor the execution of exertions in the SOO metacomputer.
The exertions can be persisted for later reuse. This feature
allows the user quickly to create new applications or programs
on the fly in terms of existing exertions.

The SILENUS federated file system was designed and
developed to provide data access for SOO programs. The
SILENUS system itself is a collection of service providers
that use the SORCER framework for communication. In this
paper a relevant security framework is described to allow the
exertion federation for a secure collaborative data access.

Since services are connected dynamically in an S2S environ-
ment, service security has become more difficult to implement
and maintain than in a static computer network. In addition,
new levels of service access (directly through interfaces and
indirectly via common service(Exertion):Exertion invocations,
by any faceless service peers) are providing new opportu-
nities for unauthorized interaction and security breaches. A
good security framework will have to address the following
attributes: [6] [7]

• identification and authentication,
• authorization,
• resource control and containment,
• confidentiality and integrity,
• non-repudiation, and
• auditing.
In addition to the security framework, the following security

measures are also recommended:
• educate uses about service security concerns and policies;
• implement a break-in detection plan to detail when to

look at audit information and specify what an auditor
provider would look for;

• implement a recovery plan detailing how to recover from
a break-in.

SORCER originally provided a simple File Store Service
(FSS). It supports filtering out information from remote files,
thus reducing the amount of data transfers between providers.
However, it is provided as a service with a centralized database
and as such not a true metacomputing application. [8]



To improve reliability and performance, file replication
services where added to SORCER. These services allowed for
the replication of file data on different nodes in the data grid.
This greatly reduced data access time. [9]

SILENUS completes the step from a traditional client-server
file-system to a network-centric system. Instead of storing data
on one particular node or in a particular service, it is the
federation of several federated services that provide the file
system. Data is no longer stored in a single service. It is split
up into different services for file content, file metadata, and
management data. SILENUS provides a true data grid solution
to complete SORCER’s metacomputing grid. [10] [11]

This service oriented file system needs at least the following
security functionality: identification, authentication, authoriza-
tion, and confidentiality. Users need to be identified with
a name or account. They need to be authenticated through
a password or a unique artifact, such as a smart card or
fingerprint. The authorization will then determine what types
of activities are permitted. Data stored in the SILENUS system
must be kept private while being transmitted over an open
network and stored on insecure nodes.

Authentication is the process of determining the authenticity
of a message or user. It can be used to verify the identity of
a user, service requestor and provider, or that a message has
not been tempered with. Authentication can be implemented
using different approaches, in particular: message digests,
message authentication codes (MACs), and digital signatures.
The latter approach is very valuable to SOO metacomputing
as it provides both a guarantee of the source of the data
and proof that the data has not been tampered with. This
approach allows the efficient use of digital certificates. A
digital certificate is essentially a signed statement by the X
party that the Y party’s public key belongs in fact to Y. The
Public Key Infrastructure (PKI) and its simpler version (SPKI)
are essentially systems for managing public-key cryptography
used for the proposed security in the SILENUS file system.
In particular service requestors and providers are identified by
X.509 digital certificates. While these certificates are usually
called “public key certificates”, this paper also uses the term
“identity certificate” or “identity” for short to emphasize their
use to securely identify an entity in a metacomputing system.

The classic security concept is for the client node to
authenticate directly to the node that provides the service. This
approach works well in a traditional client/server environment.
However, in a large distributed environment this would re-
quire the user credentials to be replicated among all service
providers. Obviously this is an administrative challenge. It is
also not very secure, as credentials may be intercepted or read
by local administrators and users in the network.

A better approach uses tokens issued by an authentication
service. Instead of authenticating directly with the service
provider, a user will authenticate with one central server - a key
distribution center (KDC). This server holds the keys for all the
users and services in the network. The server will then issue a
token to the user. This token can be used to authenticate with
services providers, which will verify the token authenticity

Fig. 1. Security model with key distribution center (KDC). A KDC is a
trusted service that knows the keys for all the nodes. If a new service is
deployed on the network, this service and the KDC need to be configured
with a key for the new node.

with the issuing authentication server. This approach is used
by Kerberos [12]. It works very well for smaller distributed
applications. In this solution, the issuing server has to be
accessed from all participating services. It will therefore not
scale well. Requiring a central server to be accessible creates
problems with organizational firewalls, which restrict the use
of this model. Figure 1 illustrates this key distribution center
case.

A problem with most existing security concepts is that
they do not allow existing authentication and user databases
to be re-used. Every system has its own user and password
database. Most systems can import users from other systems,
but importing passwords is very often a problem. Passwords
are usually stored in some specific encrypted formats and can-
not be used across other authentication system. The presented
solution allows adapting applications to different credential
providers.

Special credential mechanisms such as fingerprint scanners
and smart cards are hardly ever supported. In a few cases, some
applications such as a user login are adapted for these devices.
However, the keys stored on such a system could be used for
all kinds of services. Smart cards have been used successfully
to authenticate users with services in SORCER. [13]

Existing systems, such as TLS [14], are targeted towards
the direct communication between two partners. In a federated
system, however, requests may be sent through intermediate
services instead of being sent directly. Most existing remote
file systems are based on such end-to-end authentication and
encryption mechanisms.

The more advanced distributed file systems AFS [15] and
Coda [16] are based on the Kerberos authentication mecha-
nisms. Kerberos is currently the most widely used solution
for authentication in distributed applications, but has some of
the shortcomings described above.

What is needed is a scalable and flexible security system
for the metacomputer that makes use of existing credentials.
It should support different administrative domains, but still
provide one but flexible unique privacy and authentication
mechanism.

In this paper we describe such an approach for the SORCER



environment in general and for the SILENUS file system
in particular. First, requirements for federated computing
are identified. Then, existing authentication and identification
mechanisms are investigated. Next, a new service called
“Authentication Adapter” is introduced. A novel service for
managing user groups, called “Group Management Service”
is also presented. Then, a service called “Nomadic Group
Management Service” is introduced to support disconnected
operations. All identification and group management services
can be discovered dynamically and clients can federate with
them transparently with no a priori knowledge about their
location. The collaborative protocol for such authentication-
authorization federation is investigated. The presented group
management system is scalable and reliable as needed dynam-
ically federating identification and group management services
can be provisioned autonomically [17].

II. REQUIREMENTS

To provide the scalable and flexible security system the
following two assumption are made:

1) In a large-scale system it is more important to recognize
returning users than to recognize specific users. It is not
important which identity a user has as long as the user
has the same identity when connecting again. Using this
assumption a user could provide own credentials. As
long as it is ensured that the credentials are kept secure,
the user can always be uniquely identified.

2) In a metacomputing system all sharing is from one user
to another. The user becomes an administrator when
sharing files with another one. Thus, user identities and
group identities have to be simple and uniform not
around administrative domains but around users.

III. BACKGROUND

Allowing the user to provide own credentials can lead to
an explosion of user accounts or certificates. Therefore a
user account has to be verifiable by a trusted source. This
is commonly referred to as a trusted third party model.

In a trusted third party model a user authenticates with
an authentication service. The authentication service will then
provide verification that a given user is who she or he claims
to be. The service provider can then verify that the user is
authenticated by this authentication service. The authentication
services itself are certified by a certificate authority (CA).

The list of third parties should be small and change seldom.
This information will have to be configured on every service
provider. It should change as little as possible. Every change
would require additional administration.

A trusted third party can be any service that provides a user
base. It could be an LDAP server, a Windows domain server,
a Kerberos server, or a trusted party signing public keys. It
is only required that the server can verify users. In SORCER
this is implemented with X.509 certificates using keystore and
truststore services. [18] These certificates are also used with
TLS (SSL) security protocol to make a secure authenticated

connection between two parties: service requestor and service
provider.

A. Asymmetric cryptography

Asymmetric cryptography uses a pair of matching private
and public keys. The private key can be used to sign a
message. Knowing the public key, another entity can verify
that a certain message was indeed signed using the matching
private key. The authenticity of a public key can be verified
through configuration and such a key is called a trusted key.
This allows a private and public key-pair to be used to define
unique identities in the network.

To be secure in a network environment, the private key must
never leave the node it is stored on. All messages and identities
to be signed must be sent to the network node containing the
private key and signed locally. The identity of the user or host
requesting the digital signature must be verified before creating
the signature.

B. Public Key Infrastructure (PKI)

The basic trusted third party model requires the service
provider to be able to talk to the authentication service directly.
This is undesirable, and very often not possible. It also does
not define how the credentials are passed to and verified by
the service provider.

A standard for credentials needs to be defined. That standard
should be common, and should allow verification without
talking back to the original service. One of the commonly used
standards is provided by an X.509 public key certificate. Such
a certificate is defined as the public key of a user, together with
some other information signed by a third party’s private key.
That third party is known as the certificate authority (CA).
Public Key infrastructure (PKI) is essentially a system for
managing public-key cryptography. [19] [20] PKI is an attempt
to integrate a number of protocols and standards into a more
unified system that provides secure services.

User credentials can be any type of unique user identifica-
tion and related information. The most common authentication
uses a username and a secret password. This type of authen-
tication requires no special hardware on the user’s host. If
special hardware is present, a more sophisticated mechanism
can be used.

Usually PKI authentication is done by a service requestor
using its private key to perform a cryptographic operation on a
nonce the service provider supplies, and then transmitting the
result to the service provider. The provider checks the result
using the requestor’s public key. In that case a private key
has to be persisted by the requestor. In the presented approach
having permanent private keys stored by the user is avoided
and delegated to the authentication service. We assume that
the requestor can create a temporary private/public key pair if
needed, for example to establish SSL secure communication
channel. In that case the requestor’s public key can be signed
by the authentication service that will authenticate the user
with his username / password.



In PKI there are usually multiple certificate authorities. A
global CA is used to sign the identity of other lower-level
CAs. In our approach, each authentication service is a sub-
CA signing user keys thus creating a certificate chaining. The
signature on the user key can then be used to verify that it
was signed by a certain authentication service. The identity
of the authentication service can be verified by checking if
its certificate is signed by the global CA. Key management
is reduced since on the provider side, only the identity of
the global CA needs to be configured. A private key for
each authentication service must be created and signed by the
global CA. There are usually less authentication services than
requestors, which also reduces the key management overhead.

Thus the authentication provider has to satisfy the following
two requirements:

1) The provider has to provide a public key, which is
certified by a trusted global CA.

2) The provider also has to be able to sign small messages,
such as public keys providing an identity.

The actual private key will never have to leave the authenti-
cation service. A service provider accessed by a requestor can
then verify the requestor’s public key identity with its own
trust-store containing a public key of the global CA. Figure 2
illustrates authentication with the global CA and the described
authentication service.

The PKI provides support for identities. An identity consists
of unique service identification and a user or entity identifica-
tion that is unique on this service. The service can guarantee
that it knows the user under this name. Each service in the
SORCER network has a unique provider-id. This id is used
for the identification of the service. Group and entity ids are
text strings, such as “admin”.

C. Simple Public Key Infrastructure (SPKI)

The purpose of the Simple Public Infrastructure (SPKI)
is to communicate permissions from a keyholder to another.
SPKI’s primary objective is to provide a service provider with
the evidence that the holder of a public key is ultimately
authorized for a request signed by its matching private key.
This approach contrasts with PKI efforts that attempt to bind
keys to identities, and leave authorization to be handled by
mapping requestor’s identity to authorization. Thus, using PKI,
if you know a name for a service requestor you know its
identity, then you might know whether it is authorized to
do or have something they request. This assumption is true
in small SOO environments. That world no longer exists
in environments SORCER is designed for. Any certificate
mechanisms based on global names (e.g., X.509) fail to scale
well. In the Simple Distributed Security Infrastructure (SDSI),
an identifier is valid only locally to the service requestor who
creates it but the underlying raw public key is valid globally.
In SPKI, an authorization grant is made only locally. If the
authorization grant is needed to someone beyond a given
locality, then that grant should be delegated through a chain
of local relationships. [21] [22] [23]

SPKI has two types of certificates: name certificates, which
define local names, and authorization certificates, which confer
authorization on a key or a name. SPKI name certificates are
comparable to X.509 and are used for example as identity
certificates for users, services, and groups.

In SPKI, a service requestor creates its own local identity
consisting of a private and public key. The public key is then
sent to an authentication service, along with the username and
password. The authentication service verifies the password and
then signs the public key. The signed key is then sent back to
the requestor. When a request is made, the request is signed
with the local identity. This local identity is passed along
with the request and other credentials. The provider can then
examine the local identity to verify that the local identity is
signed by the authentication service. The provider can chain
the verification and verify that the authentication service is
vouched by the global CA, which it trusts, which then makes
a local identity trusted. Figure 3 illustrates the SPKI-based
authentication process. Figure 4 shows the keys, certificates
and configuration on the involved services.

IV. AUTHENTICATION ADAPTER

To provide support for existing user databases that are not
based on X.509 an authentication adapter service is needed.
This adapter service provides the required services and uses
the existing authentication service as its back-end. It will have
to be run on a secure system.

Unlike existing authentication services, such as Kerberos,
these adapters allow to use any user base as a backend. It is
not required to keep multiple different accounts for the same
user.

The adapter service checks the user credentials against an
existing user database. The user database may be a Unix
passwd file, an NT Domain, or any other system that can
authorize users with given credentials. If the credentials match
the ones in the user database, then the identity of the user is
assumed to be correct. His or her local SPKI identification
will be signed.

There may be multiple authentication adapters to provide
for scalability. Each authentication adapter should authenticate
against a specific user database backend. The authentication
backend identifier is part of the user id since a user with
the same username on different authentication systems may
or may not be the same user. The drawback of this solution
is that a user that has accounts on multiple systems will also
have multiple accounts in the SORCER system.

It is important that the adapter service is able to create new
keys for users that have not yet authenticated themselves with
this service. If a new user authenticates him/herself, a new pair
of private/public key must be created. The public key must be
automatically signed by the adapter. The adapter certificate
is listed as a trusted third party public key in the SORCER
truststores. Figure 5 gives an example of the authentication
process using an authentication adapter service.



Fig. 2. Authentication with PKI certificates. Each service provider is responsible for knowing its own private key. All the public keys are accessible from
one common truststore.

Fig. 3. Authentication with self generated identification (SPKI name certificates) signed using an authentication service using PKI. The service requestor
generates a temporary identity consisting of a private and public key. The public key is then sent to the authentication service, along with credentials. The
authentication service provides a certificate stating that the tempid belongs to the user.

Private Key A (Local Id)
Certificate [max@1234 has key A]B

(a) Requestor

Provider-Id 1234
Private Key B
Certificate [1234 has key B]C

(b) AuthenticationService

Private Key C
(c) Global CA

Configuration C is trusted
(d) Provider

Fig. 4. Keys, certificates, and configuration stored on different hosts for SPKI. The certificates here are shown after all authentications occurred.

V. USER GROUPS

The system described so far provides support for individual
users. It describes the security mechanisms found in existing
systems. However, it lacks support for groups of users and
different roles they might play. An extra step is needed to
support user groups and roles. A group is a set of users that
share some common security privileges. A role is a named list
or group of privileges that are collected together and granted to
users or other roles. Belonging to a group or assuming a role
is the same in the context of a file system. If a user belongs
to the group of administrators he or she may assume the role
of an administrator. To support user groups, a new service

provider called “Group Manager Service” (GMS) provider is
introduced.

A. Group Manager Service (GMS) Provider

The group manager service (GMS) provider defines a
mapping from users to groups. Given a user identity, the
GMS provider will supply credentials for all groups this user
belongs to. There may be multiple GMS providers managed
by different administrators.

The GMS provider manages group identities and creates
new group identities per user requests. It is a combination
of a group service provider and the authentication service.



Fig. 5. An authentication adapter service. The adapter connects to a legacy
authentication system to verify the existing credentials of requestor. If this
is the first time for a requestor to authenticate the adapter creates a new
identity in its keystore. It then uses this permanent identity to sign a requestor
temporary identity and sends it back to the requestor.

The process is therefore similar to the presented already
authentication with authentication services. A user authen-
ticates her- or himself with an authentication service. This
authentication service will verify the user’s identity. Using the
identity provided by the authentication service, the user then
authenticates with a GMS provider for group membership.

The GMS provider contains a database of group identities
with a mapping of users to managed groups. A group name is
defined by a proper group name and the unique id of the GMS
provider itself. The GMS provider verifies the authenticity of
the user and if she or he belongs to the requested group. The
GMS provider will then confirm the group membership of
the user by creating a signed certificate for the local group
identity of the service requestor. The certificate is signed with
the private key of the trusted GMS provider.

The mapping from users to their containing groups must be
created by an administrator. This might seem to contradict the
requirement of a scalable security framework. However, there
may be any number of group manager services, which can
be managed by different administrators. A local workgroup
may therefore run their own GMS with their own groups, so
this approach still scales well. Another approach would be
to allow every user to create their own groups. This can be
limited by granting permissions to subset of users and groups.
Allowing every user to create own permissions may lead to
manageability issues and will have to be further investigated.

Please note that requestors creates their own identity and
group identity. Both identities are certified by a trusted au-
thentication and GMS provider correspondingly. The user can
play a role as identified by the user id or group id. While user

certificates are unique, there will be multiple corresponding
certificates to the same group id. This differs from the original
PKI approach, where a certificate for a specific distinguished
name (id) is unique. Here the same group name associated with
different local group keys still can be related to the same GMS
group. In the presented case, a group-based service request is
signed with the private group key that users holds only, along
with the group membership certificate containing a matching
and trusted (vouched by its GMS) public key.

The requestor can obtain certificates for the original user
identity and related group identities. Each certificate (public
key) is valid for one user id or one group id. The user may
select which key to use as a role when requesting a service
from a provider. The request will have to be signed with the
matching private key and sent to the provider along with the
related certificates. The provider can then verify the requestor
identity or group membership of the requestor. Figure 6 gives
an example of group manager behavior. Figure 7 illustrates the
keys, certificates, and configurations for the involved services.

It is important to realize that groups with the same name
may exist on multiple GMS providers. Thus, a certificate
group name is the combination of the proper group name
and the id of the GMS provider that vouches for its managed
group. This leads to a synchronization problem in the case
of replicated GMS providers. Each replicated GMS provider
keeps an updated replica of all the groups defined by its master
GMS provider. Thus, all replicated GMS providers of the same
type certify the groups with the same GMS id so that the group
id looks always identical to any service provider independently
what GMS replica is used.

The SILENUS file system currently has support for Unix-
like permissions with read, write, and execute bits for users,
groups, and everyone else. File access permissions are man-
aged by SILENUS metadata store services. The permissions
bits itself are readable for everyone. The SILENUS requestor
retrieves the permission bits from the SILENUS file system.
It checks if it has the appropriate user identity. If not, it
checks which access group a file belongs to. The access
group contains the group name and the identity of the GMS
provider used. Using this information, the requestor can find
and connect to the relevant GMS provider for this particular
access group and try to authenticate there. If the user is part
of the access group, the GMS provider will provide the group
certificate, which the requestor can then use to access a file
from the SILENUS file system.

Using multiple and replicated group manager services pro-
vides for scalable and reliable administration. A smaller part
of a larger organization, such as a department at a university,
may provide their own group manager service and its replicas.
The credentials from this group manager service can be used
to authenticate access to local resources, such as departmental
file storage or lab access.

Splitting up of security credentials to be managed by authen-
tication services and group manager services provides support
for a modular and flexible solution. Users can have centrally
managed accounts, but their privileges may be controlled by



Fig. 6. Authentication via group manager service. The requestor creates a local identity for the user. It then authenticates with an authentication service.
The authentication service provides a certificate stating that the local user id is valid for this user. The requestor then creates a local group identity. With the
userid certificate the requestor authenticates with a group manager service. The GMS provider can furnish a certificate stating that this local group id if valid
for the requested group. The requested group certificate is signed with the private key of the GMS provider. The group (role) certificate can then be used to
request a service from any provider enforcing group permissions, for example accessing files in the SILENUS file system.

Private Keys D (Local UserId)
E (Local GroupId)

Certificate [max@1234 has key D]B
Certificate [admin@5678 has key E]F

(a) Requestor

Provider-Id 1234
Private Key B
Certificate [1234 has key B]C

(b) AuthenticationService

Provider-Id 5678
Private Key F
Certificate [5678 has key D]C
Configuration max@1234 ∈ admin

(c) GMS provider

Private Key C
(d) Global CA

Configuration C is trusted
(e) Provider

Fig. 7. Keys, certificates, and configurations stored on different hosts for use with a GMS provider. The certificates here are shown after all authentication
occurred. The group request to the GMS is signed with the requestor’s key D. The request to any service provider is signed with either key D (the userid is
selected as a role) or with key E (the groupid is selected as a role).

individual departments of the organization. Management for
departmental groups can be delegated to local administrators
without giving them full access to underlying resources.

B. Nomadic GMS

The group manager service may be replicated to different
nodes with subset of its group database. Since the GMS has
a copy of its group database, it may only be replicated in
to nodes that are trustworthy. In most cases, servers in the
locally managed department of organization are trustworthy,
and sometimes client hosts, if their users do not have local
administration rights. Replicating a GMS gives the usual
benefits of replication, such as reliability and scalability.

To support disconnected operation, a subset of the group
database existing on a particular remote GMS may be copied
in runtime to the user’s host as the volatile (no persistent
storage). A user may need to use her credentials while not
connected to the network, to access data stored on a local

nomadic system, such as a laptop. To provide access, a subset
of the groups may be copied onto the user’s machine. This
is supported by the nomadic GMS. The nomadic GMS can
replicate only the groups that are relevant to a particular user
and in volatile state. The user can then access these credentials
locally, providing support for disconnected operation.

VI. CONCLUSION

Security is often very well implemented in small, closed
systems. Users have to remember passwords for each and ev-
ery account they have. The new system proposed in this paper
solves group authentication by introducing a scalable service-
oriented security system. In this model users authenticate to an
authentication service for their identity and a group manager
service for their collaborative groups membership.

Providing authentication services by leveraging existing
authentication services allows for reuse of existing accounts.
Unlike other systems, no migration of user data is necessary.



Any existing authentication system may be reused.
The system is scalable and reliable as needed dynamically

collaborating identification and group manger services can
be provisioned autonomically. There may be any required
number of authentication and group manager services. They
may provide authentication services for a small or a large
network. Decoupling groups from accounts makes the system
manageable with a large number of users and groups.

The presented authentication model is also not centralized,
so diversifies and eliminates identification and authorizations
bottlenecks and potential single-point failures. It is up to the
individual service provider which authentication services to
accept. Different departments of the same organization may
accept different credentials, or they may all accept the same
credentials.

The presented security model requires a service provider
to keep track of the permissions for individual users and/or
group. This is sufficient for a file system such as the SILENUS
file system. For a more general service-oriented solution
the permission model needs to be provided by a separate
authorization service. An authorization service in SORCER is
currently under development that will capture more complex
permission structures for a general set of services.

The model described in this document fulfills all require-
ments for a truly scalable, manageable, distributed security
model for federated file systems required in metacomputing
environments like SORCER.

REFERENCES

[1] M. Sobolewski, “Federated P2P services in CE environments,” in
Advances in Concurrent Engineering. A.A. Balkema Publishers, 2002,
pp. 13–22.

[2] ——, “FIPER: The federated S2S environment,” in JavaOne, Sun’s
2002 Worldwide Java Developer Conference, San Francisco, 2002,
http://sorcer.cs.ttu.edu/publications/papers/2420.pdf.

[3] R. Kolonay and M. Sobolewski, “Grid interactive service-oriented pro-
gramming environment,” in Concurrent Engineering: The Worldwide
Engineering Grid. Tsinghua Press and Springer Verlag, 2004, pp. 97–
102.

[4] S. Soorianarayanan and M. Sobolewski, “Monitoring federated services
in CE,” in Concurrent Engineering: The Worldwide Engineering Grid.
Tsinghua Press and Springer Verlag, 2004, pp. 89–95.

[5] SORCER, “Laboratory for Service-Oriented Computing Environment,”
Mar. 2007, http://sorcer.cs.ttu.edu/.

[6] C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private
Communication in a Public World (2nd Edition). Prentice Hall PTR,
2002.

[7] L. Gong, G. Ellison, and M. Dageforde, Inside Java 2 Platform Security:
Architecture, API Design, and Implementation (2nd Edition). Prentice
Hall PTR, 2003.

[8] M. Sobolewski, S. Soorianarayanan, and R.-K. Malladi-Venkata,
“Service-oriented file sharing,” in CIIT conference (Communications,
Internet and Information Technology). Scottsdale, AZ: ACTA Press,
Nov. 2003, pp. 633–639.

[9] V. Khurana, M. Berger, and M. Sobolewski, “A federated grid en-
vironment with replication services,” in Next Generation Concurrent
Engineering, ISPE. Omnipress, 2005.

[10] M. Berger and M. Sobolewski, “Silenus - a federated service-oriented
approach to distributed file systems,” in Next Generation Concurrent
Engineering, ISPE. Omnipress, 2005.

[11] M. Berger, “SILENUS – a service oriented approach to distributed
file systems,” PhD Dissertation, Texas Tech University, Department of
Computer Science, Dec. 2006.

[12] B. C. N. J. G. Steiner and J. I. Schiller, “Kerberos: An authentication
service for open network systems,” in Winter 1988 USENIX
Conference. Dallas, TX: USENIX Association, 1988, pp. 191–201.
[Online]. Available: http://julmara.ce.chalmers.se/Security/usenix.PS.gz

[13] S. Bhatla, “Smart card authentication and authorization framework
(SCAF),” Master’s thesis, Texas Tech University, Lubbock, TX, May
2005.

[14] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.1,” RFC 4346 (Proposed Standard), Apr. 2006,
updated by RFCs 4366, 4680, 4681. [Online]. Available: http:
//www.ietf.org/rfc/rfc4346.txt

[15] OpenAFS Group, Apr. 2007, retrieved from http://www.openafs.org.
[16] M. Satyanarayanan, “Coda: A highly available file system

for a distributed workstation environment,” July 15 1999.
[Online]. Available: http://citeseer.ist.psu.edu/239688.html;http://www.
cs.cmu.edu/afs/cs/project/coda/Web/docdir/wwos2.pdf

[17] Rio, “Project Computing Rio,” Mar. 2007, https://rio.dev.java.net/.
[18] A. Rai, “Intrinsic security in the SORCER grid,” Master’s thesis, Texas

Tech University, Lubbock, TX, Dec. 2004.
[19] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 Public

Key Infrastructure Certificate and CRL Profile,” RFC 2459 (Proposed
Standard), Jan. 1999, obsoleted by RFC 3280. [Online]. Available:
http://www.ietf.org/rfc/rfc2459.txt

[20] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” RFC 3280 (Proposed Standard), Apr. 2002, updated by RFCs
4325, 4630. [Online]. Available: http://www.ietf.org/rfc/rfc3280.txt

[21] C. Ellison and S. Dohrmann, “Public-key support for group collabora-
tion,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 4, pp. 547–565, 2003.

[22] S. Ajmani, “How to resolve sdsi names without closure,” 2002.
[Online]. Available: citeseer.ist.psu.edu/ajmani02how.html

[23] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen, “SPKI Certificate Theory,” RFC 2693 (Experimental), Sept.
1999. [Online]. Available: http://www.ietf.org/rfc/rfc2693.txt

[24] Next Generation Concurrent Engineering, ISPE. Omnipress, 2005.


